Preface

Thank you for buying AS600M series driver made by ShenZhen ALPHA Inverter Co.,Ltd.

This series of drivers adopt the closed-loop vector control technology that features precision speed control, high torque at low frequency and load capacity strongly. The revised weak magnetic algorithm makes the divers have qucik reponse on high speed area with the great load inertia, which can provide high-performance speed and position servo function for your equipments. Its powerful function and simple operation are easy to achieve the high precision turning, milling, spindle position control, rigidity tapping, thread cutting and so on.

This series of drivers have wide speed range, quick response, high torque at low frequency and position tracking. They apply to most motor drive applications, including the numerical control lathe, processing center, CNC milling machine, CNC boring machine, and other fields such as textile industry, plastic industry, carton packaging industry, woodworking machinery and so on.

If you have any problem that can't be solved in operation, please contact the nearest local agents, or contact our company directly.

The instruction manual must be made available to the user. Prior to performing any work on the unit the user must familiarize himself with the unit. This especially applies to the knowledge and observance of the following safety and warning indications. The used pictograms have following significance.

Danger!
 This equipment contains dangerous voltage. Operations not accordant with this manual might cause life risk and human injury. Only qualified personnel shall wire the drive. Please cut off the power before wiring and inspecting. It is not permissible to touch PCB or interior components before battery control lamp goes off or until 5 minutes after the power has been removed. It is necessary to use meters to confirm the charging capacitor has discharged off. Otherwise, a risk of electric shock may happen.
Don't connect AC power source to the output terminals U, V, W of the driver. When using the driver, the earthing terminal of the driver must be grounded correctly and reliably according to IEC electrical safety regulation.
Warning!
 Unauthorized change of inner wiring and using accessories sold or recommended by unqualified manufacturer may cause fire, electric shock and injury.
Since body static electricity may cause serious damage to MOS field-effect transistor and other sensitive elements. Please don't touch the interior devices, such as PCB, IGBT module etc. before any measure is taken to prevent static electricity.
Caution!
 Keep all marks and labels are clear to read. Replace the lost or worn mark at any moment.
 Please keep the user manual near the driver that can be reached easily and give this manual to the users who use the product.

All rights reserved. The contents in this user manual are subject to change without notice. If you have any question, please feel free to contact our agents or us. Any suggestions for improvement are welcome.

Preface	1
Chapter 1 Purchase Inspection	5
1.1 Unpacking Inspection	5
1.2 Naming Rule	5
1.3 Nameplate of Driver	5
1.4 Technical Specification	6
1.4.1 Input/Output Standard	6
1.4.2 Technical Standard:	6
Chapter 2 Installation and Wiring	8
2.1 External Dimension and Installation Dimension (see Appendix 1)	8
2.2 Mounting Place Requirements and Management	
2.2.1 Installation Location	8
2.2.2 Ambient Temperature	9
2.2.3 Preventive Measures	9
2.3 Installation Direction and Space	9
2.4 Main Circuit Wiring	
2.4.1 The Main Circuit Terminals Arrangement and Wiring	
2.4.2 Main Circuit Wiring Operation	
2.5 Control Circuit Connection	
2.5.1 Function of Control Circuit Terminals	
2.5.2 Wiring of Control Circuit Terminals	
2.6 Wiring of Driver for Basic Operation	
Chapter 3 Operation	20
3.1 Function and Operation of Keypad	20
3.1.1 Keypad Layout	21
3.1.2 Description of Button Function	
3.1.3 Description of LED Digital Tube and Indicators	23
3.1.4 Operation Method of Keypad	
3.2 Flow chart of switching driver running	25
Chapter 4 Parameter Index	27
Chapter 5 Detailed Function Introductions	49
5.1 Basic Function	

Contents

5.2 I/O Terminal Ctrl	52
5.3 Analog (Group P4)	53
5.4 Rigid Tapping and Pulse Control	54
5.4.1Analog quantity rigid tapping	54
5.4.2Pulse position mode (C-Axis Function, indexing, Pulse rigid tapping	ng)
	55
5.5 Spindle Orientation	57
5.6 monitoring status	59
5.7 Recommended application	60
Chapter 6 Troubleshooting	62
6.1 Troubleshooting	62
6.2 Warning Display and Explanation	67
6.3 Motor's Faults and Corrective Measure	68
Chapter 7 Peripheral Equipment	70
7.1 Peripheral Equipment Connection Diagrams	70
7.2 Function of Peripheral Equipment	71
7.2.1 AC Input Reactor	71
7.2.2 Braking Unit and Braking resistor	71
7.2.3 Leakage Protector	72
7.2.4 Capacitor Box	73
Chapter 8 Maintenance	74
8.1 Inspection and Maintenance	74
8.1.1 Daily Inspection	75
8.1.2 Regular Maintenance	75
8.1.3 Regularly-replaced Elements	78
8.2 Storage and Protection	78
Chapter 9 Quality Guarantees	79
Appendix 1 External Dimension and Installation Dimension	81
Appendix 2 Use of MODBUS Communication	82
Appendix 3 Driver Warranty Card	97

Chapter 1 Purchase Inspection

1.1 Unpacking Inspection

All drivers have passed the strict tests before delivery. After unpacking, please check if the product is damaged by careless transport, whether the product specification and model are complied with the order, and if it has a quality check passed mark. If there is any problem, please contact the supplier.

1.2 Naming Rule

The naming rule of the product is as following

Figure 1-1 Model code

1.3 Nameplate of Driver

On the lower right side of driver, there is a nameplate, which marks the model and rated value of driver, as follows:

Figure 1-2 Nameplate of driver

1.4 Technical Specification

1.4.1 Input/Output Standard

Model	Input Power	Power Capacity (kVA)	Input Current (A)	Output Current (A)	Motor Power (kW)
AS600M-004T3E	3PH 380V 50/60Hz	6.0	10.7	9.0	4
AS600M-5R5T3E	Voltage Range: 304~ 456V Voltage unbalance rate: <3% Frequency unbalance rate: <+5%	8.6	15.5	13.0	5.5
AS600M-7R5T3E		11.2	20.5	17.0	7.5
AS600M-011T3E		17.0	26.0	25.0	11
AS600M-015T3E		21.0	35.0	32.0	15
AS600M-018T3E		24.0	38.5	37.0	18.5
AS600M-022T3E		30.0	46.5	45.0	22
AS600M-030T3E	Tate: $\times \pm 370$	40.0	62.0	60.0	30

1.4.2 Technical Standard:

	Item	Description		
Output	maximum output voltage	three-phase voltage 380V~440V		
Output	maximum output speed	8000RPM		
	Rated Voltage/frequency	three-phase voltage:380~440V 50/60Hz		
Input	Admissible voltage fluctuation	+10%, -15%		
	Admissible frequency fluctuation	$\pm 5\%$		
	Control method	Sine wave PWM modulation, full closed-loop vector control		
	speed regulation range	1: 5000		
tic	precision speed control	$\pm 1\%$		
eris	precision position control	± 1 Pulse		
acto		Digital value:0.01HZ;Analog Value:		
har		unipolarity, maximum output		
control characteristic	Set frequency resolution	frequency/4096; bipolarity, maximum output frequency /2048		
coc	ACC time /DEC time	$0\sim$ 3600S to the maximum output frequency		
	braking method	dynamic braking, Built-in Dynamic Braking Unit when the power of product is not more than 15KW.		
face	Digital Input	7 roads input optical coupling isolation; NPN and Optional Effective level		
Input/Output interface	Digital Output	3 roads output optical coupling isolation, 24V, 50mA		
utpı	Analog Input	2 roads: 0~10V, 0~20MA, -10V~+10V		
t/O	Analog Output	1 road:0/2~10V 0/4~20MA Optional		
Inpu	Relay Output	1road a set of normally open and closed contacts; 250VAC/30VDC 1A		

Chapter 1 Purchase Inspection

	Item	Description					
erface	Encoder Input Interface	1 : maximum received pulse 300KHZ; cables-driven manners; Standard RS422 communication interface;					
out inte	Pulse Input Inerface	1 road: orientation +pulse/ orthogonal pulse /CW+CCW					
put/Output interface	Encoder Output Interface	1 road: frequency dividing output 1: 1, cables-driven manners; Standard RS422 communication interface					
	All line interface	1 road: 485 all line					
ntion	Speed control	Range: $0 \sim 8000$ RPM;Rotation Direction: positative and negative; Speed command code: unipolarity and bipolarity analog value, pulse frequency, all line					
Spindle funtion	Precision stop control	Precision: \pm 1Pulse; 8 position is available via terminals.					
Spin	rigidity tapping	Work with a variety of domestic and imported system, Tapping error rate 2%					
	other	C axis control, thread cutting, electronic gear, reaming, zero speed lock					
Ð	overload protection	Drive and motor overload protection					
Protective funtion	Overcurrent protection	Overcurrent protection is implemented by hardware					
Pro	Under-voltage/over-voltage protection	Start the protetive function when the voltage is over than 800V or less than 350V					
	Output of short circuit protection	Output a alarm signal when the output to groud is a short circuit.					

Chapter 2 Installation and Wiring

- 2.1 External Dimension and Installation Dimension (see Appendix 1)
- 2.2 Mounting Place Requirements and Management

•Cable lugs must be connected to main terminals firmly.

·Don't apply supply voltage (AC 220V) to control terminals except terminals TA, TB, TC.

Please mount the driver as following instructions and maintain appropriate conditions

2.2.1 Installation Location

The installation location should meet the following conditions:

- Good indoor ventilation
- ♦ Ambient temperature: -10 °C ~ 40 °C. If the temperature is higher than 40 °C, forced ventilation or derating use is required.

- Humidity should be lower than 95%, no condensing and rain water drops.
- Do not mount the driver on the timber or other combustible matters.
- Avoid direct sunlight.
- * * * It is strictly prohibited to install the drivers in places where have flammable, explosive, corrosive gases or liquids;
- ٠ Mount in the location free of dust, metal powder, corrosive gas or combustible gas.
- * * The installation foundation should be solid and free of vibration.
- No electromagnetic interference, away from source of interference.
- Derating use must be considered when the driver is installed at high altitude greater than 1000 m. This is because the cooling effect of driver is deteriorated because of the thin air. Derating 6% per 1000 m above 1000m altitude.
- 2.2.2 Ambient Temperature

In order to enhance operating reliability of the driver, be sure where the driver mounted has a good ventilation; when the driver is used in a closed case, cooling fans or an air-conditioning must be installed to keep the ambient temperature below 40°C

Preventive Measures 223

During installing, please set a shield to prevent metal debris falling into it, and remove the shield after installing.

Please remove the protection cover board when the ambient temperature is over 40° C or the internal temperature is too high due to other reasons. Otherwise the driver should be derated. After removing the protection cover, pay attention to avoid small parts falling into the driver.

2.3 Installation Direction and Space

Drivers of this series are all equipped fans for forced cooling. In order to be an effective cooling cycle, the driver must be mounted in the vertical direction, up, down, left and right away from adjacent articles or baffle (wall) maintain adequate space, as Figure 2-1

Figure 2-1 Installation Direction and Space

2.4 Main Circuit Wiring

2.4.1 The Main Circuit Terminals Arrangement and Wiring

Figure 2-2 Wiring of terminals of main circuit of 3PH 380V 4kW

Figure 2-3 Wiring of terminals of main circuit of 380V 5.5~7.5kW

Figure 2-4 Wiring of terminals of main circuit of 380V 11~15kW

Terminal symbol	Terminal name and function			
R, S, T	Single-phase AC 220V input terminals or Three-phase AC 380V input terminals			
+、PB	Terminals for an external braking resistor			
-	DC negative bus output terminal			
U、V、W	Three-phase AC output terminals			
РЕ	Protective earth terminals for input power or earthing terminals for motor cable shield and braking resistor cable shield.			

Table 2-1	Description	of terminals	of main	circuit	of 4~15KW
-----------	-------------	--------------	---------	---------	-----------

Figure 2-5 Wiring of terminals of main circuit of 380V 18.5~30kW

symbol	Terminal name and function				
R, S, T	Three-phase AC 380V input terminals				
+	Terminals for an external braking resistor				
-	DC negative bus output terminal				
U、V、W	Three-phase AC output terminals				
РЕ	Protective earth terminals for input power or earthing terminals for motor cable shield and braking resistor cable shield.				

Table 2-2 Description of terminals of main circuit of 18.5~30KW

2.4.2 Main Circuit Wiring Operation

Do not mistakenly connect the input power cable to the output terminal; otherwise the components in the driver will be damaged. Output terminals are prohibited to be grounded. The lines should not be collided with the enclosure, or short connected; otherwise the driver will be damaged.

Earth terminal PE must be grounded. 380V class grounding resistance should be 10Ω or less. The earth wire should never share with electric welder or power equipment. The earth wire should be of conductor diameter specified in the technical standard for electrical equipment, and should be as close to the ground point as possible. On occasions using more than two drivers at the same time, please do not form the earth wire into ring circuit. Proper grounding method and incorrect grounding method are shown in Fig. 2-6

Figure 2-6 Earthing Connection Method

Notes: The neutral point of motor using Y connection can't be connected to earth.

Since the driver output PWM wave, if a capacitor for improving power factor or a lightning varistor is installed on the output side, which would cause tripping or damage to parts, be sure to remove it.

If a contactor or other on-off part is installed between the output and the motor, be sure the on-off operation is done when the driver has no output, otherwise the driver would be damaged.

2.5 Control Circuit Connection

2.5.1 Function of Control Circuit Terminals

In order to reduce interference and attenuation of control signal, the length of control cables should be limited in 50m and away from power cables for more than 30cm. Avoid control wire and power wire being parallel. Try to use STP (Shielded Twisted Pair) to connect analog input and output signal.

Encoder Socket: ТΑ тв тс 0 ₀₁₅0 0 0 0 0 11 X1 X2 X3 X4 X5 X6 X7 CON Pin Socket Pass Socket OZ+ 1 P-9 1 9 B+24V COM Y1 Y2 Y3 CME Al1 Al2 10V GND 2 P+ OB+ 2 10 10 3 3 5V 11 A-11 4 12 4 COM 12 B-5V 5 5 13 13 OA+ OZ-COM AO1 485+ 485-PE 6 6 D-14 OB-14 Z-7 15 7 15 Z+ D+ OA-8 8 A+

Plug the system encoder in the Pass Socket to connet the AS600M with the upper machine (CNC), and plug the motor encoder in the pin socket to connect the AS600M with the motor.

Figure 2-7 Terminal schematic

Category	Terminal label	Name	Description of terminal function	Specification
	AI1	Analog input 1	Analog input	AI1: 0~10V, 0~20MA
	AI2	Analog input 2	Analog liiput	AI2: -10V~+10V
output	10V	+10V power	Analog input with the power	Maximum output current 30 mA
Analog input/output	GND	Common GND	Reference GND for AI1,AI2,10V,AO1	Inner Isolated from COM
Analo	AO1	Analog output 1	Provide analog voltage output	Output voltage range: $0/2 \sim 10V 0/4 \sim 20MA$
lication	485+ 485+ 485- 485- RS485 communication interface 485 differential signal positive terminal 485 differential signal positive terminal		Standard RS-485 communication interface,	
Commun			signal negative	Please use twisted pair or shielded cable

Table 2-3 Function of control circuit terminals

Category	Terminal label	Name	Description of terminal function	Specification	
	X1	Multi-function input terminal 1	Enabled running/turning		
nal	X2	Multi-function input terminal 2	reverse		
termi	X3	Multi-function input terminal 3	Enabled control	NPN input, Setup the parameter to select the	
input	X4	Multi-function input terminal 4	Spindle orientation	effiective leve . COM is common GND.	
Multi-function input terminal	X5	Multi-function input terminal 5	Rigid tapping/pulse position		
Multi	X6	Multi-function input terminal 6	Programmed input		
	X7	Multi-function input terminal 7	Programmed input	High speed output 100K can be connected with Zero switch	
ut	Y1	Open collector outputY1	Speed reached		
1 outp l	Y2	Open collector outputY2	Ready	Optical coupling isolation open collector	
function terminal	Y3	Open collector output Y3	Orientation Completed	output operating voltage range: $0V \sim 26V$ Maximum output current: 50Ma	
Multi-function output terminal	CME	Common GND	Common GND for the multi-function output terminal		
Relay Output	TA、TB、 TC	Relay Output	Fault output	TA-TB: closed; TA-TC: open. Contact capacity: 30VDC/1A	
Control power	24V	+24V power	Provide +24V power	Maximum output current 200mA	
Con	СОМ	Common GND for +24V power	Used with other terminals	Isolation from GND	
Ground terminal	PE	shield earthing	Used to shield earthing of the terminal	Internally connected to the terminal PE of the main loop	
	+5V、 COM		Encoder power	Standard RS422,	
Encoder input	A+, A-	Encoder power and signal input	Encoder A-phase input	Maximum 300KHZ, Compatible with 5 v OC	
	B+、B-		Encoder B-phase input	interface.	

Chapter 2 Installation and Wiring

Chapter 2 Installation and Wiring

Category	Terminal label	Name	Description of terminal function	Specification
Encoder input	Z+、Z-	Encoder power and signal input	Encoder Z-phase input	Standard RS422 , Maximum 300KHZ, Compatible with 5 v OC interface.
Encoder output	OA+, OA- OB+, OB- OZ+, OZ-	Encoder signal output	Encoder A-phase output Encoder B-phase output Encoder Z-phase output	1:1 divider feedback to the system, Standard RS422
Pulse input	D+、D-	Pulse command input	CW/Directional signal /B-phase input	Standard RS422, the parameterchoose the pulse command input mode.

2.5.2 Wiring of Control Circuit Terminals

• Wiring of Analog Input Terminals

AI1 terminals accept analog signal input, DIP switch SW1 select the input voltage (0 \sim 10V) or the input current (0 \sim 20mA). The wiring of terminals is shown in Fig. 2-8:

Fig. 2-8 Wiring diagram of analog input terminals

• Wiring of Analog Output Terminal

Analog output terminal AO1 is only support the voltage signal output, external connecting analog meter can indicate a variety of physical quantities. The wiring of terminals is shown in Fig. 2-9:

Fig. 2-9 Wiring diagram of analog output terminals

- Tips
- 1) Dialing SW1 to "I" represents current; dialing to "V" represents voltage.
- 2) Analog input and output signals are easily disturbed by exterior environment, so shielded cables must be used for wiring and the length of the cables should be as short as possible.
- Wiring of Serial Communication Interface

The series of drivers provides users with RS485 serial communication interface, and can compose master-slave control system. The upper computer (a personal computer or PLC controller) can be used for real-time monitoring, implementation remote control, automatic control and others more complicated operations to drivers in network. Fig. 2-10 Illustration of wiring between the upper computer and the driver interface:

Hos RS232	t PC (DB9)		RS232/RS48	ō converter				
Pin NO.	Symbol	Shielded	Terminal Name	Description				
Shell	PE	wire	+5V	Positive of 5V				
2	RXD	1 / /	TXD	Data Send				
3	TXD	+ + + + +	RXD	Data Receive		Inv	erter	
5	GND	1 V - V I	GND	Negative of 5V				
4	DTR] Ľľ		♠		RS485 communication interface		
6	DSR			¥	_	r		
9	RI		Terminal Name	Description		Terminal Name	Description	
1	CD	1	signal negative	RS485-		RS485-	signal negative	
7	RTS		signal positive	RS485+	╟┝	RS485+	signal positive	
8	CTS						;	

Fig. 2-10 Wiring diagram between the upper computer and the driver interface

When multiple drivers are connected in one RS485 system, the communication suffers more interference,

and a maximum of 31 drivers can be connected through RS485 serial bus. Wiring is

very important. Communication bus must be shielded twisted pair wiring. The following connection method is recommended:

Fig. 2-11 Recommended wiring diagrams (drivers and motors are all well grounded) when PLC is in communication with multiple drivers

The host machine can be a personal computer or PLC controller, and the slave-based machine is this series of driver. When a PC is used as the host machine, a RS232/RS485 bus adapter should be added between the host machine and the bus; when a PLC controller is used as the host machine, connect the dotted terminals, namely RS485 terminal of slave-based machine and RS485 terminal of the host machine.

When multiple drivers compose RS485 bus communication, the matched resistance DIP switch SW2 on the control board of this series of drivers at the farthest two ends of the bus should be turned to ON position.

•Multi-Function Input Terminal Wiring

Dry Contact Way

Source (Drain Electrode) Mode

Fig. 2-12 Wiring diagram of multi-function input terminals

- Wire Multi-Function Output Terminals
- 1) Multi-function output terminals DO as discrete output can use the internal 24V

power supply of driver and the wiring method is shown in Figure 2-13.

Fig. 2-13 On-off output connection mode 1 of multi-function output terminals

2) Multi-function output terminals DO as discrete output can also use the external, 9~30V, power supply and the wiring method is shown in Figure 2-14

Fig. 2-14 On-off output connection mode 2 of multi-function output terminals

• Wiring of Relay Output Terminals TA, TB, TC

To drive inductive loads (e.g. electromagnetic relays, contactors), it is suggested to add surge voltage absorption circuit, such as the RC absorption circuit, piezoresistor or flywheel diode (pay attention to the diode polarity when used for DC electromagnetic circuit), etc. Components of absorption circuit should be installed close to both ends of coil of relay or contactor.

```
Tips
```

- 1. Don't short circuit terminals 24V and COM, otherwise the control board may be damaged.
- 2. Please use multi-core shielded cable or multi-stranded cable (above 1 mm) to connect the control terminals.
- 3. When using a shielded cable, the shielded lay's end that is nearer to the driver should be connected to PE.
- 4. The control cables should be as far away (at least 30 cm) from the main circuit and high-voltage cables as possible (including power supply cables, motor cables, relay cables and cables of contactor). The cables should be vertical to each other to reduce the disturbance to minimum.

2.6 Wiring of Driver for Basic Operation

2-15 wiring diagram

Chapter 3 Operation

A DANGER	1	Only turn on the input power supply after close the front cover. Do not remove the cover while the driver is powered on. Otherwise there is risk of electric shock. Keep away from the machinery. Otherwise there is risk of injury when the driver power supply recovers and runs suddenly.
▲ CAUTION	1 2 3 4	When braking resistor is used, the high voltage discharging at its two ends will increase its temperature. Do not touch the braking resistor to avoid danger of electric shock and burn. Before running the driver, do check again the motor and machinery operating precautions to avoid risk. Do not check signals during operation. It may damage the equipment. All driver parameters have been preset at the factory. Do not change the settings unless it is required.

3.1 Function and Operation of Keypad

The keypads of the different power rating drivers may have different exterior dimensions. However, all of them have the same array of buttons and LED display. Moreover, operation and function of them are all the same. Every keypad has a LED monitor of 4 digits with 7 segments, buttons, a digital encoder, and LED indicators. User can perform function setting, driver running, stop, and status monitoring with the keypad.

3.1.1 Keypad Layout

Fig. 3-1 Keypad layout and name of each part

Keypad upper part has five status indicators: RUN, FWD, REV, REMOTE and TRIP. The indicator RUN will be lit up if the driver is running; the indicator FWD will be lit up if it running forward and the indicator REV will be lit up if it runs reverse. The indicator REMOTE will be lit up if the driver is not controlled by keypad. The indicator TRIP will be lit up if fault occurs. To see the details, see table 3-2 description.

In monitoring status, the LED will display the status of monitored objects. At abnormal state it will display the fault code when the driver fails to run and show the warn code when the driver is warning. At normal state, it will display the object selected by parameter group PC. Refer to the detailed description of PC groups for the specific corresponding relation.

In programming mode, nixie tube displays three-level menus: function group, function codes and function parameter values. Under the function group display menu, it displays function group from "-P0-" to "-PF-"; under function code menu, it displays the corresponding function codes in the group. Under the parameters displayed in the function menu, the parameter values will be displayed.

3.1.2 Description of Button Function

On the driver keypad, there are eight buttons. In addition, the function of each button is defined as table 3-1.

Table 3-1 Keypad menu					
key	Name of key	Key functions			
PRG ESC	Programming /Exit	Enter or exit programming mode. In monitoring mode, press PRG/ESC key to switch to programming mode. First, enter function group, and press ENTER key to enter function code and then function parameters progressively; press PRG/ESC, it will exit from function parameters to function code, then function group, next monitoring state, exit step by step like this; in case of an driver failure, it can switch failure display and function group. When giving an alarm, switch alarm state and function group.			
ENTER	Enter	Enter the sub-menu, or store parameters during parameter setting.			
Digital encoder	Up (clockwise)	It can increase the function group number, function code number or function code value. In parameter setting mode, LED nixie tube blinking displays modified digit. If turn the knob clockwise, the function code value will increase; in display mode, if the keypad is set to be effective, digital frequency setting, speed PID setting or analog PID digital setting can be increased.			
(Down (counterclockwis e) (It can reduce the function code group number, function code number or function code value. In parameter setting mode, LED nixie tube blinking displays modified bit. If turn the knob CCW, the function code value will decrease; in display mode, if the keypad is set to be effective, digital frequency setting, speed PID setting or analog PID digital setting can be decreased.			
>>	Shift	In edit mode, the modified digit of the set data can be selected; In monitoring mode, displayed parameters can be switched.			
	P2.51=0	Jog: In keypad mode, press this key to enter JOG running mode.			
JOG	P2.51=1	Direction switch key: Press this button to change the direction of rotation. See P0.08 function description for details.			
RUN	Run	In keypad control mode, it is to run the driver, and a running command will be given.			

Table 3-1 Keypad menu

[key	Name of key	Key functions
	STOP RESET	Stop/Reset	In keypad control mode, the key is used to stop the driver. Clear the failure and return to normal state when there is a failure.

3.1.3 Description of LED Digital Tube and Indicators

On the driver keypad there are four digits seven segments LEDs, 3 unit indicators, 5 status indicators. The LED can display the monitoring object, the function parameter values, the fault code, and the warning code. The three unit indicators have eight combinations, and each combination corresponds to one-unit. The combinations and their corresponding units are as Figure 3-2.

Figure 3-2 Combinations of unit indicator and their means

The five status indicators are just above the LED and the meaning of each indicator is shown in table 3-2

Indicator	Display state	The current state of the driver indicated
DUDUD	Off	Stop
RUN Running-state	On	Running
indication	Flicker	Zero frequency operation
	Off	Reverse rotation or not run
FWD Forward running	Normally on	Stable forward rotation
direction indication	Quick flicker	Acceleration and deceleration of forward rotation
	Slow flicker	Going to stop, the direction is forward
	Off	Forward rotation or not run
REV Reverse running	Normally on	Stable reverse rotation
direction indication	Quick flicker	Acceleration and deceleration of reverse rotation
	Slow flicker	Going to stop, reverse direction
TRIP failure indicator	Off	Normal
I KIF Tanute Indicator	Flicker	Failure
REMOTE indicator	Off	Keypad control state

Chapter 3 Operation

Indicator	Display state	The current state of the driver indicated
(Exclusive for control	On	Terminal control state
keypad)	Flicker	Serial communication state

3.1.4 Operation Method of Keypad

Here are some examples of how to run the driver by the keypad:

Monitoring object switching:

Fig. 3-3 Operation of parameters display at running/stop status

Frequency adjustment at common running: (Example: change the setting frequency from 50.00 Hz to 40.00 Hz)

Figure 3-4 Flow chart of frequency setting

This method applies to given frequency parameter adjustment when the initial display state is any state.

When the monitor display is speed setting and analog PID digital setting, these parameters can be modified and displayed directly by turning the knob.

Setting of function code parameters: (example of changing Jog acceleration time, function code P2.01 from 6.0s to 3.2s)

Figure 3-5 Flow chart of parameter setting

In three-level menu state, no flicker digit for a parameter indicates that the function code cannot be modified, and the possible reasons include:

- Modifying the value is forbidden because the parameter is actual measure value, or running record value or fixed value.
- The function parameter cannot be changed when the driver is at running state. However, it can be changed at stop state. So stop the driver and then change the parameter value.
- The driver parameters are protected. If function parameter value PF.01=1 or 2, the parameters are forbidden to be changed. This parameter protection function is to avoid operation mistake. To change the protection parameters, change value of function code PF.01 to zero, then all the parameters can be changed

3.2 Flow chart of switching driver running

The flow chart of switching driver running is shown in Fig 3-6. CNC system uses the pulse command and bipolarity analog AI2 or unipolarity analog AI1 to control AS600M run in speed control mode . And CNC system uses the pulse command and bipolarity analog AI2 to control AS600M run in position control mode. Position control and speed control mode can be switched through the terminal X5 rigid tapping/pulse position.

3-6 Drive running state switching flow graph

Chapter 4 Parameter Index

Notes:

"o" means that the parameters can be changed during inverter running and stop state;

"×" means that the parameters cannot be changed during running;

"*" means that the parameters are actually measured value or fixed parameters which cannot be changed;

"-" means that the parameters can only be set by the manufacturer and cannot be changed by the users.

Function code	Parameter	Setting range	Factory setting	Modify flag	Modbus address
P0.00	Menu display mode	0: Standard menu 1: Check mode menu	0	0	0100
P0.01	Control mode	0: V/F control 1: vector control (VC) 3: V/F separation control	0	×	0101
P0.02	Frequency digital setting	0.00Hz ~ maximum frequency	0.00Hz	0	0102
P0.03	Frequency setting source 1	0: NULL 1: Frequency digital setting, digital knob adjustment 2: Unipolar analog (AI1) 3: Bipolar Analog (AI2) 4: Pulse input 5: Communication setting	1	×	0103
P0.04	Position command selection	0: Analog Position Control(AI2) 1: Pulse position control	1	×	0104
P0.05~ P0.06	Reserve	-	-	-	
P0.07	Control command set channel	 Keypad control Terminal control 1 (STOP key is inactive) Terminal control 2 (STOP key is enabled) Serial communication 1 (STOP key is inactive) Serial communication 2 (STOP key is enabled) Terminal control 3 (STOP and JOG keys are inactive) 	0	0	0107
P0.08	Keypad direction setting	0: Forward rotation 1: Reverse rotation	0	0	0108

P0: Basic Function

Function code	Parameter	Setting range	Factory setting	Modify flag	Modbus address
P0.09	Basic frequency	0.10~400.0Hz	50.00Hz	×	0109
P0.10	Maximum output frequency	MAX [50.00Hz, upper limit frequency, digital setting frequency, Multi-step frequency, jump frequency] ~ 400.0Hz	50.00Hz	×	010A
P0.11	Motor type	0: General Motors 1: A motor 2: B motor	0	×	010B
P0.12~ P0.13	Reserve	-	-	-	
P0.14	Rated voltage of motor	60~480V	Rated voltage	×	010E
P0.15	Reserve	-	-	-	
P0.16	Maximum output voltage	60~480V	Rated voltage	×	0110
P0.17	Keypad knob adjusting rate	0: Keypad knob integral regulation; (1~250) * (0.01Hz 1rpm)	0	×	0111
P0.18	Acceleration time 1	0.1~3600s	6.0s	0	0112
P0.19	Deceleration time 1	0.1~3600s	6.0s	0	0113

P1: Start-stop control

Function code	Parameter	Setting range	Factory setting	Modify flag	Modbus address
P1.00	Start mode	0: Start from the start-up frequency1: First brake (excitation), and then start at the start-up frequency	1	0	0200
P1.01~ P1.03	Reserve	-	-	-	
P1.04	Start-up DC braking hold time	0.0~30.0s	0.3s	0	0204
P1.05~ P1.06	Reserve	-	-	-	
P1.07	Acceleration and deceleration mode	0: Linear 1: S curve	0	0	0207

Function code	Parameter	Setting range	Factory setting	Modify flag	Modbus address
P1.08	S curve start time	$10.0 \sim 50.0$ % (acceleration and deceleration time) $P1.08 + P1.09 \le 90\%$	20.0%	0	0208
P1.09	S curve ascending stage time	10.0~80.0 % (acceleration and deceleration time) P1.08+P1.09≤90%	60.0%	0	0209
P1.10	Stop mode	0: Deceleration stop 1: Free stop 2: Deceleration + DC braking	0	×	020A
P1.11	Stopping DC braking frequency	0.00~MIN(50.00Hz, upper limit frequency)	0.10Hz	0	020B
P1.12	Reserve	-	-	-	
P1.13	Reserve	-	-	-	
P1.14	Digital setting of Stopping DC braking current	0.0~100.0% motor rated current	0.0%	0	020E
P1.15	Stopping DC braking time	0.0~30.0s	0.0s	0	020F
P1.16	Reserve	-	-	-	
P1.17	Reserve	-	-	-	
P1.18	Braking selection	0: Do not use brake 1: Use energy consumption braking	1	×	0212
P1.19	Energy consumption braking usage	30.0%~100.0% Note: It is active for 3015GB and below built-in models of this series; automatically add dynamic braking in deceleration	100.0%	×	0213

P2: Auxiliary Run

Function code	Parameter	Setting range	Factory setting	Modify flag	Modbus address
P2.00	Jog frequency	0.10Hz~upper limit frequency	5.00Hz	0	0300
P2.01	Jog acceleration time	1.0~3600s	20.0s	0	0301
P2.02	Jog deceleration time	1.0~3600s	20.0s	0	0302
P2.03	Reserve	-	-	-	
P2.04	Reserve	-	-	-	
P2.05	Frequency deviation setting	0.00~2.50Hz	0.10Hz	0	0305
P2.06	Reserve	-	-	-	

Function code	Parameter	Setting range	Factory setting	Modify flag	Modbus address
P2.07	Carrier frequency	Depend on model	Depend on model	×	0307
P2.08~ P2.12	Reserve	-	-	-	
P2.13	Multi-step frequency 1	0.00~maximum frequency	5.00 Hz	0	030D
P2.14	Multi-step frequency 2		8.00 Hz		030E
P2.15	Multi-step frequency 3		10.00 Hz		030F
P2.16	Multi-step frequency 4		15.00 Hz		0310
P2.17	Multi-step frequency 5		18.00 Hz		0311
P2.18	Multi-step frequency 6		20.00 Hz		0312
P2.19	Multi-step frequency 7		25.00 Hz		0313
P2.20	Multi-step frequency 8		28.00 Hz		0314
P2.21~ P2.35	Reserve	-	-	-	
P2.36	Cooling Fan control mode	0: Auto stop mode 1: Keep Running after power on	0	×	0324
P2.37	Wiring direction of motor	0: Positive sequence 1: Inverted sequence	0	×	0325
P2.38	Anti-reverse selection	0: Reverse rotation is enabled 1: Reverse rotation is disabled	0	×	0326
P2.39	JOG key function selection	0: JOG 1:FWD/REV	0	*	0327
P2.40	Keypad keys UP / DN enable	0:Disable 1:Enable		*	0328
P2.41~ P2.43	Reserve	-	-	-	
P2.44	PG pulses per revolution	1~9999	1000	×	032C
P2.45	PG direction	0:A phase advance during forward 1: B phase advance during forward	0	×	032D
P2.46~ P2.49	Reserve	-	-	-	
P2.50	Motor and encoder reduction ratio	1~4.000	1.000	×	0332

P3: I / O Terminal Control

Function code	Parameter	Setting range	Factory setting	Modify flag	Modbus address
P3.00	Mode of terminal action	0: Close is active 1: Open is active (normally open / normally closed is not subject to this function)	0	×	0400
P3.01	X1 terminal function	0: NULL Not defined 1: FWD Forward running 2: REV Reverse running 3-5: Reserve 6: RST Reset	1	×	0401
P3.02	X2 terminal function	7-17: Reserve18: S1 Multi-step speed 119: S2 Multi-step speed 220: S3 Multi-step speed 3	2	×	0402
P3.03	X3 terminal function	21: S4 Multi-step speed 4 22: S5 Multi-step speed 5 23: S6 Multi-step speed 6 24: S7 Multi-step speed 7 25-36: Reserve	37	×	0403
P3.04	X4 terminal function	37: EH0 external fault normally open38: EH1 external fault normally closed	0	×	0404
P3.05	X5 terminal function	39-53: Reserve 54: Control Enable 55: spindle accurate stop 56: Rigid tapping / pulse position	0	×	0405
P3.06	X6 terminal function	57: Spindle swing(Reserve)58:zero speed servo(Reserve)59: Low-speedfunction(Reserve)60: Orientation position 1	-	*	0406
P3.07	X7 terminal function	61: Orientation position 2 62: Orientation position 3 80: Pulse input(Reserve) 81: External zero(Reserve)	-	*	0407
P3.08~ P3.12	Reserve	-	-	-	
P3.13	X terminal filter time	0.002s~1.000s	0.010s	0	040D
P3.14	Reserve	-	-	-	
P3.15	Unipolar operation command mode	0:FWD/REV 1: Run + direction	0	×	040F

Function code	Parameter	Setting range	Factory setting	Modify flag	Modbus address
P3.16~ P3.17	Reserve	-	-	-	
P3.18	Control Enable	0: Terminals enable 1: Internal enabled	1	×	0412
P3.19	Reserve	-	-	-	
P3.20	Y1 terminal function	0:NULL	3	*	0414
P3.21	Y2 terminal function	1: Run 2: Ready	2	*	0415
P3.22	Y3 terminal function	3: Reach the Speed 4: Orientation completed	4	*	0416
P3.23	Y4 (Reserve)	5: Speed / position status	-	*	0417
P3.24	Relay 1 (TA/TB/TC) Output function selection	output 7: 0 speed operation 19: Fault output	19	×	0418
P3.25	Reserve	-	-	-	
P3.26	Frequency arriving detection width	0.00~10.00Hz	2.50Hz		

P4: Analog and Pulse Input and Output Terminals

Function code	Parameter	Setting range	Factory setting	Modify flag	Modbus address
P4.00	AI1 nonlinear enable	0:Disable 1: Enable	0	×	0500
P4.01	Analog zero drift value	0.000~1.000V Analog treated as 0 when the scope of the following (When the absolute value of the bipolar)	0.00V	0	0501
P4.02	AI1 Offset	-5.000~5.000V	0	0	0502
P4.03	AI1 maximum analog input value	0~10.00V	10.00V	0	0503
P4.04	AI2 Offset	-5.000~5.000V	0	0	0504
P4.05	AI2 Analog input filter time constant	0~10.000V	10.0V	0	0505
P4.06	Reserve	-	-	-	
P4.07	Analog filtering time	0~1000ms	20ms	0	0507
P4.08	Reserve	-	-	-	
P4.09	AI1 nonlinear input value 1	0.000~10.000V	0	0	0509

Function code	Parameter	Setting range	Factory setting	Modify flag	Modbus address
P4.10	AI1 nonlinear corresponding values 1	0~500.00HZ	0	0	050A
P4.11	AI1 nonlinear input value 2	0.000~10.000V	0	0	050B
P4.12	AI1 nonlinear corresponding values 2	0~500.00HZ	0	0	050C
P4.13	AI1 nonlinear input value 3	0.000~10.000V	0	0	050D
P4.14	AI1 nonlinear corresponding values 3	0~500.00HZ	0	0	050E
P4.15	AI1 nonlinear input value 4	0.000~10.000V	0	0	050F
P4.16	AI1 nonlinear corresponding values 4	0~500.00HZ	0	0	0510
P4.17	AI1 nonlinear input value 5	0.000~10.000V	0	0	0511
P4.18	AI1 nonlinear corresponding values 5	0~500.00HZ	0	0	0512
P4.19	AI1 nonlinear input value 6	0.000~10.000V	0	0	0513
P4.20	AI1 nonlinear corresponding values 6	0~500.00HZ	0	0	0514
P4.21	AO1 function definition	 0: NULL 1: Output current (0 ~ 2 times of rated current of the inverter) 2: Output voltage (0 ~ maximum voltage) 5: Calibration signal (5V) 7: Output power (0 ~ 2 times of the rated power of the inverter) 12: Output frequency before compensation (0 ~ maximum frequency) 14: Running speed (0 ~ 2 times of the rated speed) 	0	×	0515
P4.22~ P4.24	Reserve	-	-	-	

Chapter 4 Parameter Index

Function code	Parameter	Setting range	Factory setting	Modify flag	Modbus address
P4.25	AO1 output range selection	0: 0~10V/0~20mA 1: 2~10V/4~20mA	0	0	0519
P4.26~ P4.27	Reserve	-	-	-	
P4.28	AO1 Gain	-10.00~10.00	1.00	0	051C
P4.29~ P4.30	Reserve	-	-	-	
P4.31	AO1 offset	-100.0%~100.0%	0.0%	×	051F

P5: Rigid Tapping and Position Control

Function Code	Parameter name	Setting Range	Factory Setting	Modify Flag	Modbus address
P5.00	mode of pulse command	0: pulse + Direction signal 1: Two-phase pulse (Phase A + Phase B) 2: CW/CCW	0	×	0600
P5.01	the opposite direction of position command	0: not 1: Yes	0	×	0601
P5.02~ P5.03	Reserve	-	-	*	-
P5.04	Rigid tapping (position) acceleration time	The time from 0 acceleration to P5.06 0~50.00S	0.50	0	0604
P5.05	Rigid tapping (position) deceleration time	The time from 0 deceleration to P5.06 $0\sim$ 50.00S	0.50	0	0605
P5.06	The max frequency of Rigid tapping(position)	0~400.00HZ	30.00HZ	×	0606
P5.07	Rigid tapping (position)Speed loop proportional gain 1	0~50.0	3.0	0	0607
P5.08	Rigid tapping (position)Speed loop integral time 1	0.000S~9.000	0.030	0	0608
P5.09	Rigid tapping (position)Speed loop proportional gain 2	0~50.0	5.0	0	0609

Function Code	Parameter name	Setting Range	Factory Setting	Modify Flag	Modbus address
P5.10	Rigid tapping (position)Speed loop integral time 2	0.000S~9.000	0.200	0	060A
P5.11	Numerator of the electronic gear ratio	1~99999	1	×	060B
P5.12	Denominator of the electronic gear ratio	1~99999	1	×	060C
P5.13	The following error	Display value	-	-	060D
P5.14	Command frequency before the electronic gear (reserve)	Display value (KHZ)	-	-	060E
P5.15	Command frequency after the electronic gear (reserve)	Display value (KHZ)	-	-	060F
P5.16	Command pulse number before the electronic gear(reserve)	Display value	-	-	0610
P5.17	Command pulse number after the electronic gear(reserve)	Display value	-	-	0611
P5.18	Feedback pulse number	Display value	-	-	0612
P5.19	Position loop gain	0~255	1		0613
P5.20	Position loop feed-forward gain	0~2.55	0.8	0	0614
P5.21	The feed-forward filter time	0.000~0.2558	0.001	0	0615
P5.22	Command filter time	000~255 the larger number,the stronger effect of the filter Time constant=1024/ (1024-P5.22)	1	0	0616
P5.23	Pulse filter time	0.001~0.2558	0.020	0	0617

P6: Spindle Orientation

Function Code	Parameter name	Setting Range	Factory Setting	Modify Flag	Modbus address
P6.00	Position feed-forward	Display value	-	*	0700
P6.01	Pulse increment before the electronic gear	Display value	-	*	0701
P6.02	Pulse increment after the electronic gear	Display value	-	*	0702
P6.03	The pulse increment after filtering	Display value	-	*	0704
P6.04	Display the current location	Display value	-	*	0705
P6.05~ P6.06	Reserve	-	-	*	0706
P6.07	Position encoder selection (reserve)	0: Motor encoder positioning1: External encoderpositioning	0	*	0707
P6.08	Orientation signal mode(reserve)	0: Active high1: Active IOW	0	*	0708
P6.09	Orientations direction selection	 Current direction; Positive direction; Negative direction; 	0	×	0709
P6.10	Orientation frequency	0~50.00HZ	5.00HZ	0	070A
P6.11~ P6.14	Reserve	-	-	*	-
P6.15	Orientation completed width	0~9999	1	×	070F
P6.16	Orientation completed time	0.000~5.000s	0.100S	×	0710
P6.17	Orientation location selection terminal filter time	0.000~5.000s	0.050	×	0711
P6.18	Orientation deceleration time	0.1~30.0s	2.0s	0	0712
P6.19~ P6.25	reserve	-	-	*	-
P6.26	Orientations position 1	$0 \sim$ a circle of pulse number -1	0	0	071A
P6.27	Orientations position 2	$0 \sim$ a circle of pulse number -1	0	0	071B
Function Code	Parameter name	Setting Range	Factory Setting	Modify Flag	Modbus address
------------------	--------------------------------------	---	--------------------	----------------	-------------------
P6.28	Orientations position 3	$0 \sim$ a circle of pulse number -1	0	0	071C
P6.29	Orientations position 4	$0 \sim$ a circle of pulse number -1	0	0	071D
P6.30	Orientations position 5	$0 \sim$ a circle of pulse number -1	0	0	071E
P6.31	Orientations position 6	$0 \sim$ a circle of pulse number -1	0	0	071F
P6.32	Orientations position 7	$0 \sim$ a circle of pulse number -1	0	0	0720
P6.33	Orientations position 8	$0 \sim$ a circle of pulse number -1	0	0	0721
P6.34~ P6.39	Reserve	-	-	*	-
P6.40	Orientation response constant	0.01~10.00	1.00	0	0728
P6.41	A circle of pulse number	0~10000	4096	×	0729
P6.42	Enter zero servo lock range	0~2000	160	0	072A
P6.43~ P6.44	Reserve	-	-	*	-
P6.45	Orientation crawling frequency	0.01~3.00HZ	0.10HZ	×	072D

P7: Reserve

P8: Speed control parameter

Function Code	Parameter name	Setting Range	Factory Setting	Modify Flag	Modbus address
P8.00	Pre-excitation current compensation amount	0.0~500.0% 100.0% corresponds to the motor no-load current; the response time is set in P1.04 The upper limit is 80% of the rated current of the inverter or the smaller rated current of the motor	100.0%	x	0900
P8.01	Speed loop proportional gain 1	0.1~30.0	3.0	0	0901

Function Code	Parameter name	Setting Range	Factory Setting	Modify Flag	Modbus address
P8.02	Speed loop integral time 1	0.001~10.000s	0.030s	0	0902
P8.03	Speed loop switching frequency 1	0.00Hz ~ speed loop switching frequency 2	0.50Hz	0	0903
P8.04	Speed loop proportional gain 2	0.1~30.0	5.0	0	0904
P8.05	Speed loop integral time 2	0.001~10.000s	0.200s	0	0905
P8.06	Speed loop switching frequency 2	Speed loop switching frequency 1 ~ maximum frequency	10.00 Hz	0	0906
P8.07	Speed loop filter time	0.000s~0.100s	0.030s	0	0907
P8.08	Current loop proportional gain	0.1~9.9	1.0	0	0908
P8.09	Current loop integral time	0.001~1.000s	0.100s	0	0909
P8.10	Reserve		0	0	090A
P8.11	Speed feedback filter	0~5	2	0	090B
P8.12	Upper limit of driving torque	0.0%~200.0%	160%	0	090C
P8.13	Excitation current of proportional gain	0.1~9.9	1.0	0	090D
P8.12	Excitation current of integral time	0.001~1.000s	0.010s	0	090E
P8.13~ P8.19	Reserve	-	-	*	-
P8.20	Zero servo start frequency (reserve)	0.00~10.00Hz	0.30Hz	0	0914
P8.21	Zero servo gain (reserve)	1.00~99.99	1.00	×	0915
P8.22	Zero servo tolerance (reserve)	0~16383	10	×	0916

P9: V / F Control Parameter

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
P9.00	V / F curve setting	 0: Constant torque characteristic curve 0 1: Lower torque characteristic curve 1 (2.0) 2: Lower torque characteristic curve 2 (1.5) 3: Lower torque characteristic curve 3 (1.2) 4: User sets V / F curve(determined by P9.01 ~ P9.06 function code) 	0	×	0A00
P9.01	V/F frequency F1	0.0~P9.03	10.00Hz	×	0A01
P9.02	V/F voltage V1	0.0~100.0%	20.0%	×	0A02
P9.03	V/F frequency F2	P9.01~P9.05	25.00Hz	×	0A03
P9.04	V/F voltage V2	0.0~100.0%	50.0%	×	0A04
P9.05	V/F frequency F3	P9.03~P0.09	40.00Hz	×	0A05
P9.06	V/F voltage V3	0~100.0%	80.0%	×	0A06
P9.07	Torque lifting	0.0: Automatic torque lifting 0.1-30.0%: Manual lifting	0.0%	0	0A07
P9.08	Manual torque lifting cutoff point	0.00~50.00Hz	16.67Hz	0	0A08
P9.09	Slip frequency compensation	0.0-250.0% (rated torque is 100%)	0.0%	0	0A09
P9.10	Slip compensation time constant	0.01~2.55s	0.20s	0	0A0A
P9.11	Energy efficient control selection	0: Energy efficient control is disabled1: Energy efficient control is enabled	0	×	0A0B
P9.12	Energy efficient gain coefficient	0.00~655.3	Depend on model	×	0A0C
P9.13	Energy efficient voltage lower limit (50Hz)	0~120%	50%	×	0A0D
P9.14	Energy efficient voltage lower limit (5Hz)	0~25%	12%	×	0A0E
P9.15	Average power time	(1~200) * (25ms)	5	×	0A0F

	•		•	•	•
Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
P9.16	AVR function	0: Failure to actuate 1: Run all the time 2: Not act only during deceleration	2	×	0A10
P9.17	Overmodulation action	0: Invalid 1: Valid	0	×	0A11
P9.18	Droop control (load distribution)	0.00~10.00Hz	0.00Hz	0	0A12
P9.19	Output voltage offset source	 0: Digital setting 1: Terminal AI1 2: Terminal AI2 3: Terminal AI3 (reserve for 3004GB and below models) 4: Pulse input 5: Communication setting Maximum output voltage is 100% Valid only in V / F separation mode 	0	x	0A13
P9.20	Output voltage offset	0.0%~100.0%	0.0%	0	0A14
P9.21	Oscillation suppression coefficient	0~100	0	0	0A15

PA: Motor Parameters

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
PA.00	Motor selection	0: Use motor 1 1: Use motor 2	0	×	0B00
PA.01	Number of poles of motor 1	2~56	4	×	0B01
PA.02	Rated power of motor 1	0.4~999.9kW		×	0B02
PA.03	Rated speed of motor 1	0~24000r/min	During	0	0B03
PA.04	Rated current of motor 1	0.1~999.9A	Depend on model	×	0B04
PA.05	No-load current I0 of motor 1	0.1~999.9A		×	0B05
PA.06	Stator resistance R1 of motor 1	0.001~65.000Ω		0	0B06

F and an			D avida a	M. 1.C	M . 11
Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
PA.07	leakage inductance L1 of motor 1	0.1~2000.0mH		0	0B07
PA.08	Rotor resistance R2 of motor 1	0.001~65.000Ω		0	0B08
PA.09	Mutual inductance resistance Lm of motor 1	0.1~2000.0mH		0	0B09
PA.10	Saturation coefficient 1 of motor 1	0.0%~100.0%	Depend on	0	0B0A
PA.11	Saturation coefficient 1 of motor 2	0.0%~100.0%	model	0	0B0B
PA.12	Saturation coefficient 3 of motor 1	0.0%~100.0%		0	0B0C
PA.13	Saturation coefficient 4 of motor 1	0.0%~100.0%		0	0C0D
PA.14	Saturation coefficient 5 of motor 1	0.0%~100.0%		0	0B0E
PA.15~ PA.28	reserve	-		0	0B1C
PA.29	Motor parameter tuning	0: No operation1: Static parameter tuning2: Rotating parameter tuning	0	×	0B1D
PA.30	Parameter tuning process information	-		*	0B1E

Pb: MODBUS Communication

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
Pb.00	Baud rate selection	0: 1200bps 1: 2400bps 2: 4800bps 3: 9600 bps 4: 19200bps 5: 38400bps	3	×	0C00
Pb.01	Local address	0~31	1	×	0C01
Pb.02	Even-odd check selection	0: Even parity 1: Odd parity 2: No parity	0	×	0C02

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
Pb.03	Communication timeout detection time	0.0~100.0s 0: No timeout detection Other: Timeout detection time	0.0s	0	0C03
Pb.04	Response delay time	0~500ms	5ms	×	0C04
Pb.05	Communication transmission frequency command unit	0: 0.01Hz 1: 0.1Hz	0	×	0C05
Pb.06	Communication data Eeprom save options	0: Not save Eeprom directly 1: Save Eeprom directly	0	×	0C06
Pb.07	CCF6 Troubleshooting	0: Resume without reporting failure1: Reported failure and shut down automatically	0	×	0C07
Pb.08	Reserve	Reserve	0	-	0C08

PC: Display Control

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
PC.00	LCD Language Selection	0: Chinese 1: English	0	0	0D00
PC.01	Output frequency (Hz) (Before compensation)	0: Not displayed 1: Displayed	1	0	0D01
PC.02	Output frequency (Hz) (Actual)	0: Not displayed 1: Displayed	0	0	0D02
PC.03	Output current (A)	0: Not displayed 1: Displayed	1	0	0D03
PC.04	Set frequency (Hz flicker)	0: Not displayed 1: Displayed	1	0	0D04
PC.05	Reserve	-	-	*	0D05
PC.06~ PC.08	Set speed (R / min blink)	0: Not displayed 1: Displayed	0	0	0D06
PC.09	Output power (kW)	0: Not displayed 1: Displayed	0	0	0D09
PC.10	Output torque (%)	0: Not displayed 1: Displayed	0	0	0D0A
PC.11	Output voltage (V)	0: Not displayed 1: Displayed	1	0	0D0B
PC.12	Bus voltage (V)	0: Not displayed 1: Displayed	0	0	0D0C

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
PC.13	AI1 (V)	0: Not displayed 1: Displayed	0	0	0D0D
PC.14	AI2 (V)	0: Not displayed 1: Displayed	0	0	0D0E
PC.15	Reserve	-	-	*	
PC.19	Terminal state (No unit)	0: Not displayed 1: Displayed	0	0	0D13
PC.20	Actual length	0: Not displayed 1: Displayed	0	0	0D14
PC.21	Power on indication selection	1~20	1	0	0D15
PC.22	Reserve				0D16
PC.23	Reserve				0D17

Pd: Protection and Fault Parameters

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
Pd.00	Motor overload protection mode selection	 0: Failure to actuate 1: Common motor (with low speed compensation) 2: Variable frequency motor (without low speed compensation) 3: Sensor protection (immediate protection once more than the threshold) 	1	x	0E00
Pd.01	Reserve	-	-	×	0E01
Pd.05	Electronic thermal relay Electrical protection value	20~110%	100%	0	0E05
Pd.06	Overload pre-alarm detection level	20.0~200.0%	160.0%	×	0E06
Pd.07	Overload pre-alarm detection time	0.0~60.0s	60.0s	×	0E07

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
Pd.08	Current amplitude limit	 0: Invalid 1: Valid during acceleration and deceleration, and inactive during constant speed 2: Valid during both acceleration and deceleration and constant speed 3: Lower operating speed during overcurrent 	1	0	0E08
Pd.09	Current amplitude limit level	80~180%	160%	0	0E09
Pd.10	Overvoltage stall selection	0: Disable (Be chosen when installing braking resistor) 1: Allowed	1	×	0E0A
Pd.11	Overvoltage stall point	3004GB and below: $110.0 \sim$ 150.0% of the bus voltage 35R5GB and above: $120.0 \sim$ 150.0% of the bus voltage	220V models: 120% 380V models: 140%	×	0E0B
Pd.12	Input default phase detection reference	1~100%	100%	×	0E0C
Pd.13	Input default phase detection time	2~255s	10s	×	0E0D
Pd.14	Output default phase detection reference	0~100%	0%	×	0E0E
Pd.15	Output default phase detection time	0.0~2.0s	0.2s	×	0E0F
Pd.16	reserve	-	0	×	0E10
Pd.17	reserve	-	0	×	0E11
Pd.18	Number of automatic reset times	0-10, 0 indicates no automatic reset Only three failures have automatic reset function	0	×	0E12
Pd.19	Reset interval time	2.0~20.0s	5.0s	×	0E13

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
Pd.20	Confirm the time before deceleration due to overcurrent	0~200ms	50ms	×	0E14
Pd.21	Run protection while powering on	0: Not protect 1: Protect	0	0	0E15
Pd.22	Run protection after switching the run command set mode	0: Continue to run 1: Stop, received a new run command Re-run after the command	0	×	0E16

PE: Run History Record

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
PE.00	Type of latest fault	 0: NULL 1: Uu1 bus undervoltage 2: Uu2 control circuit undervoltage 3: Uu3 poor charging circuit 4: OC1 acceleration overcurrent 5: OC2 deceleration overcurrent 6: OC3 constant speed overcurrent 7: Ou1 acceleration overcurrent 7: Ou1 acceleration overvoltage 8: Ou2 deceleration overvoltage 9: Ou3 constant speed overvoltage 10: GF Ground 11: OH1 radiator overheat 12: OL1 motor overload 13: OL2 inverter overload 14: SC load short circuit 15: EF0 external fault from an serial communication 16: EF1 external fault on terminals 17: SP1 input phase loss or unbalance 18: SPO output phase loss or unbalance 	NULL	*	0F00

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
PE.00	Type of latest fault	 (contd) 19: CCF1 control loop fault The transmission between the inverter and the keypad still cannot be established 5s after powering on 20: CCF2 control loop fault After connecting the inverter and the keypad, the transmission failure last for more than 2 seconds 21: CCF3 EEPROM failure 22: CCF4 AD translation exception CCF5 RAM failure 24: CCF6 CPU is disturbed 25: PCE Parameter name replication error 26: Reserve 27: HE Hall current detection fault 28: De Cut-to-length detection fault 	NULL	*	0F00
PE.01	Output frequency when the latest fault occurs	0~upper limit frequency	0.00Hz	*	0F01
PE.02	Set frequency when the latest fault occurs	0~upper limit frequency	0.00Hz	*	0F02
PE.03	Output current when the latest fault occurs	$0 \sim 2$ times of the rated current	0.0A	*	0F03
PE.04	DC busbar voltage when the latest fault occurs	0~1000V	0V	*	0F04
PE.05	Service condition when the latest fault occurs	0: StP Stop 1: Acc Acceleration 2: dEc deceleration 3: con Constant speed	StP	*	0F05
PE.06	Fault history (the latest)	The same with PE.00	NULL	*	0F06
PE.07 PE.08	Fault history 2 Fault history 3	The same with PE.00 The same with PE.00	NULL NULL	* *	0F07 0F08

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
PE.09	Accumulated running time	0~65530h	0h	*	0F09
PE.10	Cumulative power-on time	0~65530h	0h	*	0F0A
PE.11	Total electricity consumption (MWh)	0~9999MWh	0MWh	*	0F0B
PE.12	Total electricity consumption (KWh)	0~999KWh	0KWh	*	0F0C

PF: Parameter Protection and Product Identification Information

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
PF.00	User password	0: No password Other: Password protection	0	0	1000
PF.01	Parameter write protection	 0: All parameters are allowed to be rewritten 1: The funciton codes cannot be rewritten except for P0.02 and this funciton code. 2: All the funcion codes cannot be rewritten except for this funcion code. 	0	0	1001
PF.02	Parameter Initialization	 0: No operation 1: Clear the fault history 2: Restore factory setting (Except record \ password \ motor parameters) 3: Restore factory setting (Except record \ password) 	0	×	1002
PF.03	Parameter copy	0: No action 1: All parameters download 2: Parameters upload 3: Parameters download without motor's Note: Only active for LCD keypad	0	×	1003
PF.04	Reserve	-	0	×	1004
PF.05	Product No. 1	0~9999		*	1005
PF.06	Product No. 2	0~9999		*	1006
PF.07	Product No. 3	0~9999		*	1007
PF.08	Product No. 4	0~9999		*	1008

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
PF.09	Product serial number	0~9999		*	1009
PF.10	Software version number	0.00~99.99		*	100A
PF.11	Non-standard version and serial number	0.000~9.999		*	100B
PF.12	Software identification code	0~9999		*	100C

Chapter 5 Detailed Function Introductions

5.1 Basic Function

P0.00 Menu display mode	Setting range: 0~1 [0]
-------------------------	------------------------

1. Check mode menu

0: Standard menu Notes:

When P0.00 is set to 1, the display enters the check menu mode. In this mode, you can view and modify each modified function code by the knob adjustment. The remaining unmodified function codes will not be displayed unless you change the setting to 0 again.

P0.01 Control mode	Setting range: 0~3 [2]
0: V/F control	1: vector control
2: Reserve	3: V/F separation control

Notes:

- V / F Control: VVVF ordinary open-loop control
- Closed-loop Vector Control: Speed sensor vector control mode is for high perfomance occasion.
- V/F Separation Control: This control mode can be used in some places where the frequency and the voltage are required to control independently.

P0.02 Frequency digital setting	Setting range: 0.00Hz ~Maximum frequency [0.00Hz]
---------------------------------	--

Notes:

When P0.03 = 1, the keypad can be used to set frequency digital.

Tips:

The P0.02 ,which is changed by the digital knob on the keypad, can work immediately. If "ENTER" is pressed, the value will be stored into the inverter's internal EEPROM and will not be lost even power outage.

P0.03 Frequency setting source 1 Setting range: 0~5 [1]

0: NULL

1: Frequency digital setting, digital knob

adjustment

- 2: Unipolar analog (AI1)
- 3: Bipolar analog (AI2)
- 4: Pulse input
- 5: Communication setting

Setting range: 0~1 [1]	P0.04 Position command selection	Setting range: 0~1 [1]
------------------------	----------------------------------	------------------------

0: Analog position Control(AI2) 1: Pulse position control Notes:

- Set P0.03 to 1: During keypad digital setting, in monitoring status, the frequency setting can be modified through digital knob on the keypad; when the setting frequency is related to P0.02, in monitoring status, P0.02 can be adjusted through the knob on the keypad.
- ◆ When the unipolar analog (AI1) and bipolar analog (AI2) are used, the frequency of P0.01 correspond to 10V,but also can be adjusted by P4.When the bipolar AI2 is used, the polarity represents the direction and an enable signal is enough.
- Command pulse: Speed signal is up to the pulse frequency, P5.00 selects the pulse form.

P0.07 Control command set channel	Setting range: 0~5 [0]
0: Keypad control	1: Terminal control 1 (STOP invalid)
2: Terminal control 2 (STOP valid)	3: Serial communication 1 (STOP invalid)
4: Serial communication 2 (STOP valid)	5: Terminal control 3 (STOP and JOG invalid)
Notes:	

• In the keypad control mode, the user uses RUN and STOP to start and stop the driver.

- In the terminal or serial communication control mode, STOP /JOGP on the keypad is optional
- to be effective .

P0.09 Basic frequency	0.10~400.0Hz
P0.10 Maximum output frequency	$0.10 \sim 400.0 Hz$

Notes:

• Basic frequency F_{BASE} : the basic frequency of the motor.

Maximum frequency F_{MAX}: the corresponding value of analog 10V(Can be adjusted by P4). The maximum output frequency is limited by this parameter, Generally speaking, the maximum speed corresponds to the maximum rotate speed. The relationship of speed and frequency is as below:

f = n * P/60 f: frequency n: Speed P: Motor pole pairs(Poles/2)

P0.11 Motor type	Setting range: 0~1 [1]
0: General Motors 2: B motor	1: A motor

Notes:

Select the motor type. When selecting our company's A-type or B-type motor, after setting this parameter, the motor parameters and encoder lines will be set automatically. Self-learning motor parameters is no need.

P0.18 Acceleration time1	Setting range: 0.1~3600s [6.0s]
P0.19 Deceleration time1	Setting range: 0.1~3600s [6.0s]

Notes:

• Acceleration time: the time is for the driver rising from zero to the maximum frequency.

• Deceleration time: The time is for the driver decelerating from the maximum frequency to zero .

P2.13 Multi-step frequency 1~ P2.19 Multi-step frequency 7	Setting range: 0.00~Max frequency
---	-----------------------------------

Notes:

When Setting P0.03 to 1, X terminal set the multi-frequency setting, multi-frequency setting is of a high priority to the digital frequency setting, and the low number of multi-speed is high priority as following table:

Multi-step frequency	S 1	S2	S3	S4	S5	S6	S7
P2.13	1	×	×	×	×	×	×
P2.14	0	1	×	×	×	×	×
P2.15	0	0	1	×	×	×	×
P2.16	0	0	0	1	×	×	×
P2.17	0	0	0	0	1	×	×
P2.18	0	0	0	0	0	1	×
P2.19	0	0	0	0	0	0	1

Note: 1 represents the effective, 0 is invalid. \times is an arbitrary value

P2.37 Wiring direction of motor	When setting P2.37 to 1, the output phase sequence is inverted with the actual wiring to avoid changing the wiring.
P2.44 Built-in PG pulse number per revolution	For speed control encoder lines
P2.45 PG disconnection detection time (reserve)	For changing the direction of the encoder A/B phase
P2.50 Motor and encoder reduction ratio	The speed ratio of motor and encorder
Notes:	

Notes:

If the postive encoder is in contrast to the postive motor, the running will be abnormal. And the motor shakes and current is large, the user changes parameter P2.45 (0 to 1,1to 0)

- If the motor runs properly but the direction is reversed, the user changes the parameter P2.37 and P2.45.
- When the encoder is not mounted on the motor shaft, please set the correct P2.50 (motor and encoder reduction ratio)

5.2 I/O Terminal Ctrl

P3.01 X1 terminal function	1:FWD Forward Run / Run Enable
P3.02 X2 terminal function	2:REV Reverse Run / Direction
P3.03 X3 terminal function	54: Control Enable
P3.04 X4 terminal function	55: Exact stop spindle
P3.05 X5 terminal function	56: Rigid tapping / pulse position
P3.06 X6 terminal function	37: EH0 external fault normally open
P3.07 X7 terminal function	6: RST Reset

Notes:

• Set the appropriate terminals to the other features when the above function is no need.

•	Control seque	nce is as fo	ollows(P0	.03 must ł	be set to th	e terminal	l control)	:
						V5 D1.11		

Fun	ction	Control Enable	X1 Forward	x2 Reverse	X4 Orientat- ion	X5 Rigid tapping / pulse position	Explanation
Forward	Unipolar	1	1	0	0	0	
run	bipolar	1	1	0	0	0	Analog is positive
Reverse	Unipolar	1	0	1	0	0	
run	bipolar	1	1	0	0	0	Analog is negative
Exact sto	op spindle	1	×	×	1	×	Exact stop spindle highest priority
	tapping position)	1	×	×	0	1	
Free	e state	0	×	×	×	×	Control enabled by X3 enabled, or internal enable, P3.18 = 1 (default is internal enabled)

Notes: 1 represents the effective, 0 is invalid. × is an arbitrary value

When the speed is up to a unipolar analog or a digital timer ,the running command and direction is as follows:

P3.15 = 0 Forward / Reverse

P3.15 = 1 run + direction

When the speed is up to the bipolar analog to the timing, X1 runs signal, the polarity of the analog decides the running direction ,positive voltage means forward, negative voltage means reverse.

When the speed is up to the pulse, X1 runs signal, the pulse direction decides the running direction, positive pulse means forward, negative pulse means reverse.

P3.20 Y1 terminal function	3: Speed reached Speed to reach a given speed range within P3.26 output valid
P3.21 Y2 terminal function	2: Ready When the inverter has no fault, and ready output valid
P3.22 Y3 terminal function	4: Exact stop place Exact stop position deviation in the range of P6.15 and P6.16 time after the effective output
P3.24 relay 1 (TA/TB/TC)	19: Fault output

Notes: Output terminals can also be set to the following functions

1 :Run the drive enable output is active

5 :Speed / position status output In the position control mode, the output is valid 7: 0 speed operation When the driver hasn't any speed output, the terminal output is valid

P4.01 Analog zero drift value	When the analog at below this range, treated as zero(the absolute value of the bipolar)
P4.02 AI1 Offset	AI1 (unipolar analog) Offset
P4.03 AI1 maximum analog input	Value corresponds to the maximum
value	frequency (P0.10) analog

5.3 Analog (Group P4)

5.4 Rigid Tapping and Pulse Control

5.4.1Analog quantity rigid tapping

P0.04 position command selection	0: analog quantity position control (AI2)
P5.04 Rigid tapping (position) acceleration time	The acceration time of analog rigid tapping, the time from 0 acceleration to P5.06
P5.05 Rigid tapping (position) deceleration time	The deceleration time of analog rigid tapping, the time from 0 deceleration to P5.06
P5.06 The max frequency of Rigid tapping(position)	The max frequency when in analog rigid tapping mode, the corresponding frequency to AI2 10v

Notes:

• The position loop is processed in CNC system when the frequency converter in analog quantity rigid tapping, the analog is the output of the position, which is

used to adjust the speed of spindle position loop .when X4 active high,the frequency converter run into analog quantity rigid tapping. In order to improve the resolution of the speed, usually P5.06 should not be too big, and the frequency should be linked to the max speed of rigid tapping on the system.

P5.08 rigid tapping (position) Speed loop proportional gain 1	Rigid tapping/pulse position terminal active high, the two set of parameters P5.07
P5.08 rigid tapping (position) Speed loop integral time 1	P5.08andP5.08、P5.09active high; Rigid tapping/pulse position terminal active low,the two
P5.09 rigid tapping (position) Speed loop proportional gain 2	set of parameters P8.01、P8.02and P8.04、P8.05 active high; gain 1 and gain 2,integral time 1 and integral time 2 transition switch by P8.03 and P8.06.
P5.10 rigid tapping (position) Speed loop integral time 2	The larger the gain, the better the rigid,but may cause oscillation. The smaller the gain, the better the rigid,but may cause oscillation.

5.4.2Pulse position mode (C-Axis Function, indexing, Pulse rigid tapping)

P0.04 position command selection	1: pulse position control
P5.00 mode of pulse command	 0: pulse + Direction signal 1: Two-phase pulse (Phase A + Phase B) 2: CW/CCW
P5.01 the opposite direction of position command	0: not 1: Yes
P5.11 Numerator of the electronic gear ratio	The actual number of pulses =the number of
P5.12 Denominator of the electronic gear ratio	pulses that receives $\times \frac{P5.11}{P5.12}$

P5.19 Position loop gain	If the parameter is larger, so the rigidity will become better and follow error be smaller, but too large may cause oscillation.
P5.20 Position loop feed-forward gain	Increasing this parameter can be used to reduce the following error and accelerate response, but may cause overshoot
P5.21 The feed-forward filter time	Increasing this parameter will help reduce fluctuations that induced by feedforward, but has the potential to slow response
P5.22 Command filter time	Increasing this parameter the pulse command becomes smooth, but will slow response

mode of pulse command

0: pulse + Direction signal

1: Two-phase pulse (Phase A + Phase B)

A:	Forward Run	Reverse Run
B:		

2: CCW pulse + CW pulse

Speed running mode and position running mode

:

5.5 Spindle Orientation

P6.09 Orientations direction selection P6.10 Accrate stop frequency	 0: current direction; 1: positive direction; 2: negative direction; reaching this frequency before accrate stop 	
P6.15 Orientation completed width P6.16 Orientation completed time	When the driver accurate stop and position deviation in complete range, after completion time it will send a singal of accurate stop	
P6.17 Orientation location selection terminal filter time	This parameter indicates the time that location selection terminals to determine position when the accurate stop location is chose From a plurality of locations	
P6.18 Orientation deceleration time	This parameter indicates the deceleration time the driver used from High-speed to accurate stop	
P6.26 Orientation location 1 ~ P6.33 Orientation location 8	User can choose one position from 8 positions through the terminals	
P6.40 Accrate stop response constant	Increasing this parameter can eliminate the overshoot caused by spindle inertia, but will slow down response	
P6.41 a circle of pulses number	This value is 4 times frequency value. When the spindle and motor speed reduction ratio is 1:1, this value is 4 times the number of encoder line	
P6.42 Enter zero servo lock range	The lowest frequency before accurate stop is limit at accurate stop Crawling frequency,when the devitation and target position in the locking range within moment in zero lock range	
P6.45 Accurate stop crawling frequency		

Determine the position of the spindle orientation

Spindle use encoder Z signal as the reference origin(0 pulse points) and display position to the form of pulse. For example, a ring of 4096(4 times frequency):

 $\frac{1}{4096} \times 360^{\circ} = 0.088^{\circ}$

 $1_{\text{\tiny N}}$ Lift the spindle orientation stop signal, so that the spindle is in free state $_{\circ}$

 2_{s} Manual rotation so that the spindle stop at the target location(if the spindle encoder is used ,please forward rotation of the spindle in a circle above_

3, In the surveillance state press the ">>" key to switch to the current position display, and fill the value in the orientation of location parameter (P6.26-P6.33).

4、 Peform a spindle accurate stop, if there is a devitation, it can be calibrated through increasing or decreasing the number of pulses.

• Multi position accurate stop selection

After terminals set for 60-62 functions, user can get multi- position selection through the terminal combination. The choice of position signal must be effective before the accurate stop signal established. Terminal combination and Orientation location table as follows:

	60: accurate stop position 3	60: accurate stop position 2	60: accurate stop position 1
Orientation location 1	0	0	0
Orientation location 2	0	0	1
Orientation location 3	0	1	0
Orientation location 4	0	1	1
Orientation location 5	1	0	0
Orientation location 6	1	0	1
Orientation location 7	1	1	0
Orientation location 8	1	1	1

Note: "1" indicates terminal effective

5.6 monitoring status

PC.01 Output frequency (Hz) (Before compensation)	
PC.02 Output frequency (Hz) (Actual)	
PC.03 Output current (A)	
PC.04 Setting frequency (Hz, Flicker)	When this parameter is set as 1 to show the parameter in the monitoring status ,press">>"key to
PC.05 Operating speed (r/min)	switch display
PC.11 Output voltage (V)	
PC.12 Bus voltage (V)	
PC.13 AI1 (V)	
PC.14 AI2 (V)	
PC.19 Terminal status (no unit)	

Notes:

• When PC.19 is set as 1, the terminal status will be displayed. If it is set as 0, the object will not be displayed.

5.7 Recommended application

Case 1:

application: belt transmission, all CNC system

Features: the spindle speed control, low speed control and large torque, high speed maching, fast acceleration and deceleration.

Case 2:

application: synchronous belt transmission, 1: 1transmission ratio, no spindle encoder. Features: Spindle simulation/pulse speed control, accurate stop, pulse position control, realize the function of C-axis.

Case 3:

application: synchronous belt transmission or reducer transmission, transmission ratio of CNC is not 1: 1.

Features: Spindle simulation/pulse speed control, accurate stop, pulse position control,

rigid tapping. If the system does not need the spindle encoder signal, user can use zero switch to replace the Z signal of the motor encoder.

Chapter 6 Troubleshooting

6.1 Troubleshooting

When the driver has detected a fault, the keypad will display the fault code, and the driver will stop PWM output and come into fault protection state. In the fault indicator TRIP will flicker, the fault relay has output and the motor will coast to stop. At this time, you should find the reason of fault and apply corrective actions. If the listed troubleshooting cannot solve the problem, please contact our company directly. After debugging, you can press "STOP/RESET" or reset external terminals to restart the driver. Notes: the driver can't startup even through debugging has been finished if operating signal isn't removed. You should cut operating signal first and then close again or remove main circuit power supply once to make the fault reset. If the SC fault appeared, the reset is only permitted after 10 seconds. If you want to see the work condition (such as output frequency, reference frequency, output current, bus voltage., etc) or contents of the latest three faults, please press "PRG/ESC " to enter program state and then turn the knob to see parameter value of function code PE.00~PE.08.

Fault Display	Name of Protection	Possible Cause to Fault	Countermeasure
Uu1	Busbar under-voltage	• The input voltage is abnormal	• Check the voltage of power supply
Uu2	The control circuit is poor	• The control circuit under-voltage	• Check and test the electrical level setting
Uu3	The charging circuit is poor	• The contactor doesn't pull in.	• Check the charging circuit
OC1	Overcurrent during the acceleration	 The acceleration time is too short The V/F curve is not appropriate The power voltage is low The driver power is too small The driver output load is short-circuited. 	 Increase the acceleration time Adjust the V/F curve setting and have the appropriate torque boost setting Check the input power supply Select the driver with the larger power Check the motor coil resistance and the motor insulation

Table 6-1 Troubleshooting

Fault Display	Name of Protection	Possible Cause to Fault	Countermeasure
OC2	Overcurrent during the deceleration	 The deceleration time is too short The load inertia torque is large The driver power is too small The driver output load is short-circuited 	 Increase the deceleration time Add the appropriate brake components additionally Select the driver with the larger power Check the motor coil resistance and the motor insulation
OC3	Overcurrent during the constant-speed operation	 Abnormal load The acceleration or deceleration time is set to be too short The power voltage is low The driver power is too small The driver output load is short-circuited 	 Check the load Increase the acceleration or deceleration time appropriately Check the input power supply Select the frequency-driver with the larger power Check the motor coil resistance and the motor insulation
Oul	Overvoltage during the acceleration	 The input voltage is abnormal The acceleration time is too short The stalling overvoltage point is too low 	 Check the input power supply; check & test the electrical level setting Increase the acceleration time appropriately Raise the stalling overvoltage point
Ou2	Overvoltage during the deceleration	 The input voltage is abnormal The deceleration time is too short The load inertia torque is large The stalling overvoltage point is too low 	 Check the input power supply; check & test the electrical level setting Increase the deceleration time appropriately Add the appropriate brake components additionally Raise the stalling overvoltage point

Chapter 6 Troubleshooting

Fault Display	Name of Protection	Possible Cause to Fault	Countermeasure
Ou3	Overvoltage during the constant-speed operation	 The input voltage is abnormal The acceleration or deceleration time is too short The load inertia torque is large The stalling overvoltage point is too low 	 Check the input power supply; check & test the electrical level setting Increase the deceleration time appropriately Add the appropriate brake components additionally Raise the stalling overvoltage point
GF	Output earthing	• The output earthing current exceeds the specified value	 Check whether the motor insulation has become poor Check whether the connection line between the driver and the motor is damaged
OH1	Heat radiator overheating	 The environment temperature is too high The air duct is blocked The fan works abnormally/ is damaged 	 Reduce the environment temperature Clear the air duct Replace the fan
OL1	Motor overloaded	 The driver output exceeds the motor overload value The V/F curve is inappropriate The power grid voltage is too low The ordinary motor operates at the low speed and with the large load for a long time The motor stalls or the load becomes too large suddenly 	 Reduce the load Adjust the V/F curve and the torque boost Check the power grid voltage Select the special motor Check the load

Fault Display	Name of Protection	Possible Cause to Fault	Countermeasure
OL2	Driver overloaded	 The driver output exceeds its overload value The DC brake quantity is too large The V/F curve is not appropriate The power grid voltage is too low The load is too large The acceleration time is too short The current limit level is too low 	 Reduce the load and increase the acceleration time Reduce the DC brake current and increase the brake time Adjust the V/F curve and torque boost Check the power grid voltage Select the driver with the larger power Increase the acceleration time Raise the current limit level
SC	Load short-circuit/output earthing short-circuit	 The driver output load is short-circuited The output side earthing is short-circuited 	 Check whether the connection cable between the driver and the motor is damaged Check the motor coil resistance Check the motor insulation
EF0	External fault with the RS485 serial communication	 The serial (MODBUS) transmission error Fault caused by the external control circuit 	 Set the correct timeout detection time or set the Pb.03 timeout detection time as 0.0s Check the external control circuit Check the input
EF1	External fault with terminals X1~X5		terminal conditions. If terminals are not used but the fault is still displayed, please seek the technical support for settlement.
SP1	Input phase loss or imbalance	• Input R,S & T phase loss or imbalance	 Check the input voltage Check the input connection line
SP0	Output phase loss or imbalance	• Output U,V,W phase loss or imbalance	 Check the output connection line Check the motor and cable insulation

Chapter 6 Troubleshooting

Fault Display	Name of Protection	Possible Cause to Fault	Countermeasure
CCF1	Control circuit fault 0	 Transmission between the driver and the keypad cannot be established within 5s after power is supplied (when power is just supplied) 	 Re-connect the keypad Check the connection line
CCF2	Control circuit fault 1	• The -driver and the keypad communicate once after power is supplied, but the transmission fault afterwards last for at least 2s (in operation)	 Replace the keypad Replace the control board
CCF3	EEPROM fault	• EEPROM fault with the control board of driver	• Replace the control board
CCF4	AD conversion fault	• AD conversion fault with the control board of driver	• Replace the control board
CCF5	RAM fault	• RAM fault with the control board of driver	• Replace the control board
CCF6	CPU disturbance	 Serious disturbance MCU reading & writing error with the control board The communication line is connected reversely or the DIP switch is at wrong position. 	 Reset via the button "STOP/RESET" Add the power filter at the power side additionally Seek the technical support
PCE	Parameter copying error	 Error with the parameter copying between the keypad and EEPROM of the control board EEPROM of the control board is damaged 	 Repeat the copying operation Replace the control board Seek the technical support
HE	Current detection fault	 Fault with the driver current detection circuit The Hall components are damaged 	 Replace the driver Seek the technical support

Note:

① The products whose power is low including 3022G/3030P and below modes won't display these fault codes Uu2 and Uu3.

② The standard LED Keypad cannot copy the parameter ,while the apolegamic LCD keypad has this function.

6.2 Warning Display and Explanation

After warning action, warning code is displayed and flickering, but the driver is not in fault-protecting state. In other words, PWM output will not be closed off, fault relay will not act. In addition, the driver would automatically return to prevenient operation state after the warning cause is removed.

The following table lists different kinds of Warnings.

Alarm Display	Display Content	Description
Uu	Under-voltage detection	Under-voltage is detected. The driver can still work in this case.
OLP2	Driver overload pre-alarm	The driver working current is over the overload detection level and the duration is over the overload detection time. In this case, the driver can still work.
OH2	Heat radiator temperature too high	The heat radiator temperature is larger than the OH2 detection benchmark. In this case, the driver can still work.
AE1	Analog signal 1 is abnormal	The input analog signal in the analog input signal passage AI1 exceeds the allowed maximum range of -0.2~+10.2V.
SF1	Function code setting is inappropriate	For example, for the I/O terminal, SS0-2 and TT0-1 setting is not incomplete
SF2	The running mode selection is inconsistent with the terminal setting	The operation manner setting is inconsistent with the setting of terminal X1~X10.
SF3	The choice of Output terminal is wrong, which only occures in the 35 R5GB and above models	The driver has three open-collector outputs, their output terminals $D0_{\times} Y1_{\times} Y2_{\times} Y3$ are programmable and multifunctional terminals. The user can choose to output a part of Control and monitoring signals. The content of the function definition must be same, which is 26 or 27, to make the combination of D0,Y1,Y2 and Y3 effective When setting up an open-colletor output for the program runs instructions or fault indicator.
AtE	Parameter auto-tune is abnormal	The parameter auto-tune is abnormal. The driver will exit from the parameter tuning automatically.

Table 6-2 Warning display and description

6.3 Motor's Faults and Corrective Measure

If the motor has one of the following faults, please find the reason and take corresponding corrective measure. Seek for technical support if the measure does not work

Fault	Check Content	Corrective Measures
The motor failsto run	Check whether the power is supplied to the power terminals R, S and T and whether the CHARGE LED indicator light is on.	 Be connected to the power supply Disconnect the power supply and then be connected to it again. Check the power voltage Check whether the terminal screws have been tightened
	Test whether the voltage of terminals U, V and W is correct with the rectifier voltmeter	• Disconnect the power supply and then be connected to it again.
	Check whether the motor has been locked due to overload	• Reduce the load and remove the lockout
The motor failsto run	Check whether there is fault display on the keypad and whether the TRIP light is flickering	• Search Table 6-1 according to the fault codes
	Check whether there is the operation command	• Check whether the operating terminal connection lines are connected reliably
	Check whether the anti-reverse selection setting conflicts with the direction command	• Set the reverse allowing or change the direction command
	Check whether the terminal operation signal is disconnected first and then connected after the fault occurs	• The terminal operation signal is disconnected first and then connected
	Check whether the given frequency voltage is input	• Check the given frequency voltage
	Check whether the operation manner is set correctly	• Input the correct setting
The motorrotate s reversely	Check whether the connection lines of terminals U, V and W are correct	 Adjust the corresponding connection lines of terminals U, V and W Adjust the function code P2.45
The motor rotates but cannot	Check whether the connection lines of frequency reference circuit are correct	• Correct the connection lines
change the speed	Check whether the load is too large	• Reduce the load or increase the acceleration or deceleration time
The motor rotating	Check whether the maximum output frequency setting value is correct	• Check the maximum output frequency setting value
speed is too high or too low		• Check the V/F characteristic value

Table 6-3 Motor fault and corrective measure	Table 6-3	Motor	fault and	corrective	measure
--	-----------	-------	-----------	------------	---------

Fault	Check Content	Corrective Measures
	Check whether the load is too large	Reduce the load
The motor	Check whether the load variation is too large	• Reduce the load variation
rotating speed is unstable during operation	Check whether there is phase loss with the three-phase power	 Check whether there is phase loss with the connection lines of the three-phase power For the single-phase power, connect the AC reactor to the power supply
	The frequency giving source is unstable	• Check the frequency giving source
There is too much noise	The bearing is worn, lubrication is poor, and the rotor is eccentric	• Repair the motor
with the motor	The carrier frequency is too low	• Increase the carrier frequency
There is too	Mechanical resonance	 Adjust the leaping frequency
large	The machine legs are not even	 Adjust the machine legs
vibration with the motor	The three-phase outputs are imbalanced	• Check the driver output

Chapter 7 Peripheral Equipment

7.1 Peripheral Equipment Connection Diagrams

7.2 Function of Peripheral Equipment

Peripheral			
Equipment &	Description		
Optional parts	*		
	It is used to cut off the fault current of the driver rapidly and		
Breaker	prevent the power fault caused by fault with the driver and its		
	circuits.		
Contactor	It is used to cut off the main power supply at the time of driver		
Contactor	fault and prevent power failure & restarting after the fault		
* AC Reactor	It is used to improve the input power factor, reduce the higher		
AC Reactor	harmonic and inhibit the power surge		
	It is used reduce the radio disturbance caused by the driver.		
	When the wiring distance between the motor and the driver is		
*EMI Filter	less than 20m, it is suggested to be connected to the power		
	supply side; when the distance is over 20m, is suggested to be		
	connected at the output side.		
* Braking Unit	They are selected and used when the braking torque cannot meet		
and Braking	the requirements, and are applicable on occasions of high-inertia		
resistor load & frequent braking or rapid stop.			

Table 7-1 Function of Peripheral Equipment	
--	--

Remarks: *-marked items are optional parts.

7.2.1 AC Input Reactor

Using AC input reactor can restrain higher harmonic wave and improve power factor obviously. In the following situation, users are advised to use ac reactor.

- Power supply capacity: Driver capacity>10:1
- Silicon controlled load and switching controlled power factor compensator are on the same power supply line.
- Degree of three-phase voltage imbalance is more than 3%

7.2.2 Braking Unit and Braking resistor

Brake units are in-built in this series of drivers whose power rating is 15kW and below. When dynamic braking is required, the user just has to connect the braking resistor. There are not in-built brake units with the drivers of 18kW and above. When the dynamic braking is required, the additional braking unit should be connected. The braking unit consists of the control part, the driving part and the discharging resistance. The control part should be adjusted according to the overvoltage protection action values for this series of drivers. If the discharging resistance part is provided with the overheating protection, it is suggested that the controlling connection point be connected to the main control circuit. Refer to the following table for common braking resistors specifications.

Voltage (V)	Motor Power (kW)	Resistance Value (Ω)	Resistance Power (kW)
	4	50	1
	5.5	50	1
	7.5	50	1
Three- phase	11	40	1.5
380V	15	40	2
	18.5	30	4
	22	30	4
	30	20	6

Table 7-2 Motor power and brake resistor selection

At braking, the regenerated energy of motor is almost consumed on the braking resistor. The braking power can be calculated according to the following formula:

$$U * U / R = Pb$$

In the formula, R is the value of selected braking resistor, U is the braking voltage at stable braking of the system (it varies with different systems; for the 380VAC system, it is generally taken as 700V), and Pb is the braking power. Theoretically, the power of braking resistor is the same with the braking power, but generally 70% of it will be used. Power required by the braking resistor can be calculated according to the following formula:

$$0.7 * Pr = Pb * D$$

In the formula, Pr is power of the braking resistor, and D is the braking frequency (proportion of the regeneration process in the whole working process), which can be selected according to the following table:

Table 7-3 Reference	for	Braking	Frequency
---------------------	-----	---------	-----------

Application Occasion	Elevator	Uncoiling & Coil Taking	Centrifuge	Accidental Braking Load	General Application
Braking Frequency	20%~30%	20~30%	50%~60%	5%	10%

7.2.3 Leakage Protector

There is direct earth safety capacitor or distributed capacitor inside the driver, the motor and with the input & output lead wires. At the same time this series of drivers is of low-noise type, and the higher carrier wave is used. Thus, the earth leakage current
of the driver is large, which is more obvious for the large capacity drivers. Sometimes, it may cause mistaken action of the leakage protection circuit.

In the above cases, not only the carrier frequency should be reduced appropriately, the lead wire should be shortened and the output reactor as well as the leakage protector should be installed. When the protector is installed, attention should be paid to the following points:

The leakage protector should be installed at the input side of driver and had better behind the breaker.

The leakage protector functioning current should be 10 times larger than the leakage current of this circuit under the fundamental frequency power supply and with the driver unused (total leakage current of circuits, EMI filter and motor, etc).

7.2.4 Capacitor Box

This optional device is applied specially on occasions where continuous operation is required as there is relative long momentary power off over 20ms. It can be purchased from our company. In the purchase order, please specify the actual load and the continuous operation time required after power off, so we can manufacture it appropriately.

As the capacitance box may influence some parameters in driver after it is assembled, the purchasing without our instruction is not recommended.

Chapter 8 Maintenance

1. Please do not touch the terminals of driver, which are provided with the high voltage.

There is the danger of electric shock.

- 2. Before power is supplied, please do install the terminal casing well. When the casing is dismantled, please do cut off the power supply. There is the danger of electric shock.
- **3.** Maintenance and inspection cannot be started until the main circuit power supply is cut off and the CHARGE LED indicator light is confirmed to go out. There is the danger of residual voltage on the electrolytic capacitor.
- 4. Non-professionals are not allowed to do the job of maintenance and inspection. There is the danger of electric shock.

- 1. As the CMOS integrated circuit is installed on the keypad panel, the control circuit board and the driving circuit board, please pay special attention when they are used. If the circuit boards are touched with the finger directly, the integrated chips on them may be damaged by the electrostatic induction.
- 2. Please do not change the connection lines or dismantle the terminal lines when power is supplied.

There is the danger of electric shock.

3. Please do not check the signal during operation. Otherwise, the equipment may be damaged.

8.1 Inspection and Maintenance

Driver is a typical product which combines the power electronics technology with the microelectronics technology. Therefore, it double features with industrial Equipment and microelectronics Equipment. The change of environment such as temperature, humidity, smog and internal components aging will cause kinds of faults to the driver. For long time reliable operation, daily inspection and regular maintenance (at least 3 or 6 months interval) is needed.

8.1.1 Daily Inspection

Before driver running, please check below:

- Whether there is abnormal sound or vibration with the motor;
- whether the driver and the motor heat up abnormally;
- whether the environment temperature is too high;
- whether the load ammeter indicates the same value as usual:
- whether the cooling fan of driver operates normally;
- Whether the braking resistor has the good earthing insulation.

The daily maintenance and inspection content is showed in Table 8-1.

Table 8-1 Content and Notice for Daily Maintenance & Inspection

No.	Inspection Item	Inspection Part	Inspection Content	Judgment Standard
1	Display	LED Monitor	Whether the display is abnormal.	Determine according to the use state (e.g. when nothing is displayed after power is supplied, the braking resistor and the earthing insulation can be checked)
2	Cooling System	Fan	Check whether it rotates flexibly, whether there is abnormal sound, and whether it is jammed by dust.	No abnormality
3	Driver Body	Inside the Machine Case	Temperature rising, abnormal sound, peculiar smell and accumulated dust	No abnormality
4	Working Environment	Surrounding Environment	Temperature, humidity, dust and harmful gas, etc	According to Clause 2.2
5	Voltage	Input & Output Terminals	Input and output voltage	According to the technical specifications in Appendix 2
6	Load	Motor	Temperature rising, abnormal sound and vibration	No abnormality

8.1.2 Regular Maintenance

The power supply must be cut off before regular maintenance. Only after the monitor has no display and charge LED has gone off $5\sim10$ minutes can the maintenance begin. Otherwise, you will risk electric shock because there are storage capacitors within the driver that will hold charge even after the input power is disconnected.

The regular maintenance contents and cautions are listed in Table 8-2.

Inspection Item	Inspection Content	Countermeasure
Screws of main circuit terminals and control circuit terminals	whether the screws are loosened	Tighten them with the screwdrivers
Heat Radiator	whether there is dust	Purge it with the 4~6kg/cm ² dry compressed air
PCB (Printed Circuit Board)	whether there is dust	Purge it with the 4~6kg/cm ² dry compressed air
Cooling Fan	whether it rotates flexibly, whether there is abnormal sound or vibration, and whether there is accumulated dust or blocking object	Replace the cooling fan and clear the dust & foreign objects
Power device	whether there is dust	Purge it with the 4~6kg/cm ² dry compressed air
Electrolytic Capacitor	Check whether there is color variation, peculiar smell, bubbles and liquid leaked, etc.	Replace the electrolytic capacitor
Braking resistor	whether the earthing insulation is good	Put the braking resistor at the dry and insulated place

Table 8-2 Content of Regular Maintenance & Inspection

During the inspection, elements cannot be dismantled or shaken casually. Moreover, connectors cannot be pulled out casually. Otherwise, the driver may not be able to run normally or may enter the fault display state. Even, components faults may be caused or the main switch device IGBT module or other elements may be damaged.

When measurement is required, it should be noted that results with great difference may be got with different instruments. It is recommended that the moving-coil voltmeter be used to measure the input voltage, the bridge voltmeter be used to measure the output voltage, clamp-on ammeter be used to measure the input & output current, and the electric wattmeter be used to measure the power. If conditions are inadequate, the same meter can be used for measurement and record should be reserved to facilitate comparison.

If the waveform test is required, it is suggested the oscilloscope with the scanning frequency larger than 40MHz be used. When the instantaneous waveform is tested, the oscilloscope with the frequency over 100MHz should be used. Before the test, electric isolation should be done for the oscilloscope.

The recommended connection for the electrical measurement of the main circuit is as below Fig 8-1, the instruction is shown in Table 8-3.connection

Figure 8-1 The recommended connection

Item Input(Power)		1	DC Middle stage	Output (Motor)			D0		
Wave to Voltage									
W	Current					\frown			
Meas instru	0	voltmeter	ammeter	Wattm- eter	DC voltmeter	Voltmeter	ammeter	wattmeter	voltmeter
Instru ty]	iment pe	Moving coil	Electro- magne- tic	Dynamo -electric	Magnetoelec -tric	rectifier	electrom agnetic	Dynamoel- ectric	Agnetoele- ctric
	sured neter	Fundame- ntal wave effective value	total root mean square	total effective power	DC voltage	Fundament al wave effective value	total root mean square	total effective power	DC Voltage

In the case of serious power supply asymmetry or three-phase current imbalance, it is suggested the three-wattmeter method be used to measure the power.

As the electric insulation test and the dielectric strength test have been done for the product before it leaves the factory, the users don't have to do such tests again.

Moreover, such tests will reduce the insulation and voltage withstand performance of the product. If such tests are conducted inappropriately, product elements may even be damaged. If such tests have to be done really, it is suggested they be conducted by the skilled technicians.

If the main circuit voltage withstand test is to be done, the withstand voltage tester with

the time & leakage current settable and the similar capacity should be used. The test may reduce the life of product. If the main circuit insulation test is to be done, the main circuit terminals R, S, T, U, V, W, PB(P1), + and – etc should be short-circuited reliably and then the meg-ohmmeter with the near voltage grade (250V for 220V, 500V for 380V, and 1000V for 660V) should be used for measurement. The control circuit should be measured with the resistance shift of the universal meter instead of the meg-ohmmeter.

For the 380V main circuit, the ground insulation resistance should not be less than 5 M Ω ; for the control circuit, the ground insulation resistance should not be less than 3 M Ω .

8.1.3 Regularly-replaced Elements

To ensure the long-term and reliable operation of driver, regular care and maintenance should be carried out for internal electronic elements of the driver. The life of these electronic elements varies with the environment and conditions where the drivers are used. Generally, if the driver is used continuously, the elements can be replaced according to the following table, which also depends on the using environment, load conditions and driver state, and other specific conditions. As showed in Table 8-4, the maintenance term is just for user's reference when it is used.

Name of Element	Standard Years for Replacement
Cooling Fan	2~3 years
Electrolytic Capacitor	4~5 years
Printed Circuit Board	5~8 years

Table 8-4 Replacement Time for Wearing Elements of Driver

8.2 Storage and Protection

If the driver is not used immediately after purchased and has to be stored temporarily or permanently, the following should be done:

- It should be put in the place within the specified temperature & humidity scope, without damp, dust and metal dust, and with good ventilation.
- ◆ If it is unused for over one year, the charging test should be conducted to restore the characteristics of electrolytic capacitor of the main circuit. During charging, the input voltage of the driver should be increased to the rating value slowly with the voltage regulator. The energizing time should be at least 1~2 hours.
- The above test should be conducted at least once a year. The voltage withstand test cannot be conducted casually, as it will reduce the life of driver and even damage the elements. For the insulation test, the 500V mega-ohmmeter whose insulation resistance is not less than 4 MΩ can be used.

Chapter 9 Quality Guarantees

The quality guarantees of this product follows the regulations below:

The guarantee scope involves only the frequency inverter body. The guarantee period, starting from the date when it is delivered from the company, is 12 months after the product is purchased but is not beyond 24 months after the manufacture date on the nameplate.

For faults caused by the following reasons, the product will be repaired with charge even if it is still within the guarantee period:

- problems caused by incorrect operation or unauthorized repair or alteration;
- problems caused as the frequency inverter is used beyond the standard requirements;
- damage caused as it falls down or is carried violently after purchased;
- element aging or fault caused as it is used in the environment inconsistent with the requirements of the user manual ;
- damage caused by foreign objects (e.g. insects, etc) into the inverter;
- damage of inverter caused by the wrong wire connection;
- Faults caused by the earthquake, fire, storm & flood disaster, lightning strike, abnormal voltage or other natural disasters and reasons accompanying the disasters.

For the product with faults, our company is entitled to entrust other agencies to do the job of guarantee maintenance.

If the fault is surely included in the quality guarantees content of our company and the product is used domestically:

- guaranteed replacement, return and repair within one month after the product is delivered;
- guaranteed replacement and repair within three months after the product is delivered;
- guaranteed repair within 12 months after the product is delivered

If the product is delivered overseas, guaranteed repair will be applied within 3 months after it is delivered. Relevant service expense will be calculated according to actual conditions. If there is an agreement, the expense will be settled according to the agreement in priority.

All our sales departments and agencies over China can provide the after-sale service for the product.

Additional Remarks:

About liability exemption

- Our company shall not be liable for results caused or induced by violation of the user manual when the product is used;
- Our company shall not be liable for compensation for the loss or involving and ongoing damage caused to the user by the product faults.

About User Instruction Manual:

The user instruction manual is applicable to the series of products.

Our company has the lifelong liability for the product and provides all services related to use of this product.

Although the product is designed and manufactured with the strict quality control system, our company should be consulted first if it serves the following purposes that may endanger the human body or the life as a result of faults or operation mistakes.

- Used for the transport equipment;
- Medical device;
- Nuclear and power equipment;
- ♦ Aviation and aerospace device;
- Various safety devices;
- Other special purposes

About hope for the User:

We hope vast users can propose suggestions on our product design, performance, quality and service, which will be greatly appreciated.

Appendix 1 External Dimension and Installation Dimension

Figure A1-1 Schematic outline

140		Enternar	Dimension	on (unit.	mmy		
Specifications	Н	H1	W	W1	D	D1	
004T3E	235	217.5	130	90	165.7	181.6	
5R5T3E-7R5T3E	298	284.5	180	135	178	193.6	
011T3E-015T3E	375	360	235	193	212	227	

018T3E-030T3E

Table A1-1	External Din	nension (mit	mm)
Table AT-T	External Din	nension (unit:	mm)

These series drivers can use the programmable logic controller (PLC) and other upper devices to conduct the data exchange through MODBUS communication protocol.

• Constitution of MODBUS Communication

The communication data bus consists a main controller (PLC) and 1~31 drivers. The signal is transmitted from the main controller and the driver responds to it.

The main controller conducts the signal transmission with maximum 31 drivers. All drivers should have their own address codes. The main controller transmits signals according to the specified codes. The drivers will function after receiving the commands from the main controller and feedback the response to the main controller.

Communication Standard				
Interface	RS-485			
Communication Manner	Asynchronous and half-duplex			
Communication Parameters	Speed: selected from 1200/2400/4800/9600/19200/38400bps Parity Check Selection: even / odd/ none Data length: 8 bits fixed, Stop Bit: 1 bit fixed			
Communication Protocol	MODBUS-RTU Mode			
Number of Connectable Drivers	31			

• Communication Standard

Description of the communication connecting terminal

MODBUS communication uses 485+ and 485- terminals. Besides, the control board of the driver is equipped with terminal resistors: when multiple drivers in this series are connected using RS485 bus communication, from the perspective of PLC, the drivers regarded as the terminal should keep its SW3 at ON position.

- Notice for Wring
- (1) The communication cables should be separated from the main circuit cables, other power cables and electric cables.

(2) Shielded cables should be used as the communication cables. The shielding layer should be connected to the earthing terminal of driver, while the other end will not be connected. (To prevent malfunction caused by disturbance)

The sequence to have communication with PLC is as follows:

1. When the power supply is cut off, connect the communication cable between PLC and driver.

- 2. Supply the power.
- 3. Set the parameters required by communication on the keypad (P0.03~P0.07).
- 4. Cut off the power supply and wait until keypad display disappears completely.
- 5. Switch on the power supply again.
- 6. Conduct the communication with PLC.
- Setting of Communication Parameters

To communicate with PLC, communication-related parameters should be set. All the parameters cannot be changed during running except for Pb.01 and Pb.04 and can be changed during stop state. Pb.01 and Pb.04 can be changed during driver running.

"\circo" means that the parameters can be changed during inverter running and stop state; "\times" means that the parameters cannot be changed during running;

Function code	Parameter name	Setting range	Factory setting	Modify flag	Modbus address
P0.03	Speed command selection	 0: NULL 1: Frequency digital setting, digital knob adjustment 2: Unipolar analog (AI1) 3: Bipolar Analog (AI2) 4: Pulse input 5: Communication setting 	1	×	0002H
P0.07	Control command set channel	 Keypad control Terminal control 1 (STOP key is inactive) Terminal control 2 (STOP key is enabled) Serial communication 1 (STOP key is inactive) Serial communication 2 (STOP key is enabled) Terminal control 3 (STOP and JOG keys are inactive) 	0	×	0001H

*Note 1: Only when the "Communication setting" passage is selected, can the command be written into the corresponding register. Otherwise, 02h will be reported.

*Note 2: If the Baud rate selection and the parity check selection are revised, new setting will not become effective until the driver is stopped first and then restarted.

Setting of these two items for the upper and lower computers should be the same. Otherwise, communication cannot be established or there will be errors with communication.

*Note 3: When the driver address is set as 0, the driver will not receive the communication command, including the broadcast command. When the driver address is larger than 0, the new address will become effective once it is revised.

*Note 4: To match with other frequency communication command, please set the frequency communication command unit .For examples, when the frequency of 50HZ and PLC trasmission frequency of 01F4H is set, 1 is selected. The driver change to 50HZ after receiving the frequency comman; If the transmission frequency is 1388H ,0 is selected and the system deal with it as 50HZ.

• Transmission Period Limit

In order to reduce the packet loss ratio caused by the communication disturbance and get the best communication effect, please limit the data transmission period in the host station to ensure both data transmission and receiving are normal.

Pb.00 baud rate selection	Minimum transmission period limit (ms) (only even parity check)	Suggestion transmission period limit(ms) (all parity check)
0: 1200	220ms	250ms
1: 2400	110ms	150ms
2: 4800	65ms	100ms
3: 9600	50ms	90ms
4: 19200	35ms	80ms
5: 38400	17ms	50ms

*Notes: With the even parity check manner selected, the user can obtain the quickest communication response.

The minimum transmission period limit includes the time from the transmission to receiving the corret data.

If the transmission period limit is below the minimum transmission period limit, the main receiving data may be garbled.

• Command Formatting

During communication, the main controller (PLC, etc) gives commands to drivers, and the drivers respond to them. As the command function content varies, the length of data will vary as well.

The process constitutes the information transmission & receiving as showed in the following figure. The interval between two commands should maintain the time recorded below.

Driver address: driver address $(0 \sim 31)$

When it is set to 0, commands are transmitted together in the broadcast manner. Even if the broadcast command is received, the driver will not give response.

• Command Code

There are four types of MODBUS command codes supported by the series of drivers, which are showed as follows:

Command Code	Function	Command Length (BYTE)		Ler	Response 1gth TE)	Abnormal Response Length (BYTE)	
(16 bits)		Minimum	Maximum	Minimum	Maximum	Minimum	Maximum
03H	Reading Record	8	8	7	7	5	5
06H	Single Character Writing	8	8	8	8	5	5
08H	Loopback Test	8	8	8	8	5	5
10H	Writing Record	11	11	8	8	5	5

CRC-16 method

The calculation method for CRC-16 used by MODBUS communication is as follows:

- 1) Generally, when CRC-16 is calculated, its initial value is 0, and the initial value of the communication terminal series is set as 1. (1 for 16 bits)
- LSB according to the inverter address is MSB, and the final data MSB uses LSB to calculate CRC-16.
- 3) The response command of inverter also has to calculate CRC-16 to be compared with CRC-16 in the response command.

unsigned int CRC16(unsigned char*uptr, unsigned int ulenth)

```
{
unsigned int crc=0xffff;
unsigned char uindex;
if(ulenth>=9)
{
```

Appendix 2 Use of MODBUS Communication

```
ulenth=9;
}
while(ulenth!=0)
         crc^=*uptr ;
          for(uindex=0;uindex<8;uindex++)</pre>
          {
                if((crc \& 0x0001) == 0)
                ł
                    crc=crc>>1;
                else
                {
                    crc=crc>>1;
                    crc^=0xa001;
                }
          }
          ulenth-=1;
          uptr++;
}
    return(((crc&0x00FF)<<8))((crc&0xFF00)>>8));
}
```

• Example of Command Application

[03H]

Reading of Single-character Command: read the single-character record content from the specified code. The record content is divided into high 8 bits and low 8 bits and becomes part of the response content in order.

Example: read the state of driver 1

Command Cor	ntent	Normal Response Content			Abnormal Response			
Driver Address 01			Driver A	Driver Address		Content		
Command	l Code	03	Comman	d Code	03	Driver	Driver Address	
	High Bit	00	Number	of Data	02			
Start Address	Ingli Dit	00	Content of	High Bit	00	Comm	and Code	83
	Low Bit	20	Data	rigii bit	00	Abno	Abnormality	
Number of	High Bit	00	Dutu	Low Bit	C1		Code	03
Addresses	Low Bit	01	CRC	High Bit	79	CRC	High Bit	01
CRC	High Bit	85		Low Bit	D4	CRU	Low Bit	31
ene	Low Bit	C0						
Notes: The number of data doubles that of address.								

[06H]

Single-character Writing Command: write a single character into the specified register, and save the specified data in the specified register. The data saved should be among the order of record codes. The command content should be arrayed in the sequence of high 8 bits and low 8 bits.

Example: start the operation of driver 1

Command Content				Normal Response Content			_	Abnorm	al Respons	se Conte	ent
Driver A	Address	s 01		Driver Address		01		Driver Address		01	
Comma	nd Code	06		Comma	nd Code	06		Command Code		86	
Start	High Bit	00		Start	High Bit	00		Abno	ormality	00	
Address	Low Bit	01		Address	Low Bit	01		C	ode	00	
Content	High Bit	00		Content	High Bit	00		CRC	High Bit	42	
of Data	Low Bit	01		of Data	Low Bit	01		ene	Low Bit	60	
CRC	High Bit	19		CDC	High Bit	19					
CRC	Low Bit	CA		CRC	Low Bit	CA					

[08H]

Loop Test Command: the command content is fed back originally in the form of response and is used for test of signal transmission and returning between the main controller and the driver. Arbitrary values can be used as the test code and data. Example: loop feedback test

Command Content				Normal Response Content			Abnormal Response Content			ent	
Driver A	Address	01		Driver	Address	01		Driver Address		01	
Comman	nd Code	08		Comm	and Code	08		Command Code		88	
Test 1	High Bit	00		Test	High Bit	00		Abno	ormality	03	
Code	Low Bit	00		Code	Low Bit	00		C	ode	05	
Test l	High Bit	12		Test	High Bit	12		CRC	High Bit	06	
Data	Low Bit	34		Data	Low Bit	34		ene	Low Bit	01	
CRC 1	High Bit	ED		CD C	High Bit	ED					
	Low Bit	7C		CRC	Low Bit	7C					

[10H]

Single-character Writing Command: write the content into the specified register, and write the specified data in the specified register. The data saved should be among the order of record codes. The command content should be arrayed in the sequence of high 8 bits and low 8 bits.

Example: set the frequency as 50.00Hz

Command Content			Normal Resp	onse Cont	ent	Abnormal Response		
Driver A	Driver Address 01			Driver Address		01	Content	
Comma	nd Code	10		Comman	d Code	10	Driver Address 01	
Start	High Bit	00		Start	High Bit	00	Command Code 90	
Address	Low Bit	02		Address	Low Bit	02	Abnormality 03	
Number	High Bit	00		Number of	High Bit	00	Code	
of				Addresses	Low Bit	01	CRC High Bit 0C	
Addresse	Low Bit	01		CDC	High Bit	A0	Low Bit 01	
S				CRC	Low Bit	90		
Number	of Data	02			Low Bit	70	1	
Content	High Bit	13						
of Data	Low Bit	88						
CRC	High Bit	AA						
	Low Bit	E4						
	Notes: The number of data doubles that of address.							

[10H]

Data Saving Command: write the MODBUS register address corresponding to the function parameters into the special saving address of 0xFF, and save the parameter content into EEPROM. It is equivalent to ENTER of the keypad to save the data without being lost at power failure. The command content is arrayed in the order of high 8 bits and low 8 bits. 00FFH is specially used for data saving and is effective when Pb.06=0.

Example: set the frequency as 30.0Hz and save it in EEPROM.

Command C	Content			Normal Res	ponse Cor	ntent	Abnormal Response	
Driver A	ddress	01		Driver Address		01	Content	
Comman	d Code	10		Comman	d Code	10	Driver Address 01	
Start	High Bit	01		Start	High Bit	00	Command Code 90	
Address	Low Bit	02		Address	Low Bit	FF	Abnormality 23	
Number of	High Bit	00		Number of	High Bit	00	Code	
Addresses	Low Bit	01		Addresses	підії Бі	00	CRC High Bit 0D	
Number	of Data	02			Low Bit	01	Low Bit D9	
Content of	High Bit	0B		Number	of Data	02		
Data	Low Bit	B8		Content of	High Bit	01		
an a	High Bit	B1		Data	Low Bit	02		
CRC	Low Bit	D2		CRC	High Bit	B3		
L			I	CKU	Low Bit	CF		
							-	

[10H]

Two Commands Writing: it can operate the two registers of 0001 action command and 0002 frequency setting 1. It should be noted that the operation command giving manner setting (P0.07) should be "serial communication" and that the frequency setting source 1 (P0.03) should be "communication setting".

Example: set the frequency as 50.0Hz.

Command	Command Content						
Driver	Address	01					
Comma	nd Code	10					
Start	High Bit	00					
Address	Low Bit	01					
Number of	f High Bit	00					
Addresses	Low Bit	02					
Number	of Data	04					
	High Bit	00					
Content of	f Low Bit	01					
Data	High Bit	13					
	Low Bit	88					
CRC	High Bit	6E					
CKU	Low Bit	F5					

Normal Response Content						
Driver A	ddress	01				
Comman	d Code	10				
Start	High Bit	00				
Address	Low Bit	01				
Number of	High Bit	00				
Addresses	Low Bit	02				
CRC	10					
	Low Bit	08				

Abnormal Response Content					
Driver	Address	01			
Comm	and Code	90			
	ormality ode	03			
CDC	0C				
CRC Low Bit 01					

Notes: The number of data doubles that of address.

• List of Data:

Command Data (writable)

MODBUS Address	Name	bit	Content				
0000H		(Res	verved)				
		0	Operation Command 1: Operation 0: Stop				
		1	Reverse Command 1: Reverse 0: Forward				
		2	External Fault 1: External Fault (EFO)				
		3	Fault Resetting 1: Fault Resetting Command				
	0001H Operation	4	Multi-functional Input Command 1 (P3.01 X1Terminal Function)				
		5	Multi-functional Input Command 2 (P3.02 X2Terminal Function)				
0001H		6	Multi-functional Input Command 3 (P3.03 X3Terminal Function)				
	Signal	7	Multi-functional Input Command 4 (P3.04 X4Terminal Function)				
		8	Multi-functional Input Command 5 (P3.05 X5Terminal Function)				
		9	Multi-functional Input Command 6 (P3.05 X5Terminal Function)				
		А	Multi-functional Input Command 7 (P3.05 X5Terminal Function)				
		B~ F	Reserved (See below Note 1)				
0002H	Speed Com	mand					
0003~001FH	Reserved						

Note 1: write "0" in the reserved BIT.

Note 2: when the communication frequency command is > the maximum frequency, the abnormality code 21H "Beyond the Upper & Lower Limit" will be reported and the operation frequency will be reserved unchanged.

Note 3: addresses of 000DH~0011H and 0013H~001FH are reserved in the general driver.

Note 4: when the above reserved register addresses are read, address error will be fed back.

1 al allietel	Taraneters Saving [input Command] (writable)								
Record	Name	Content	Setting Range	Initial Value					
00FFH	Input Command	MODBUS address in the function list	0100H ~ 0FFFH						

Parameters Saving [Input Command] (Writable)

Notes:

For the data writing command 06 and 10, only the data are written into RAM for operation and are effective for this operation. After the driver is powered off and restarted, the data written last time will not saved.

If the data written by communication has to be effective after the driver is powered off and restarted, the data should be written and saved in EEPROM. Function 10 can be used to write the parameters of MODBUS address to be saved into 0x00F.

By writing the MODBUS address corresponding to the parameters to be saved into 0x00FFH, the parameter data in RAM will be written and saved in EEPROM. As the maximum writing times of EEPROM is 100,000, the input command had better not be used frequently. The command is similar to ENTER in the keypad, by pressing which the set parameters will be written into EEPROM. The record code 00FFH is special for writing. When the record is read, record code errors may happen (abnormality code 02H).

	ling con		Read-only)		
MODBUS Address	Name	bit		Content	
		0	Operation	1: Operation	0: Stop
		1	Reverse	1: Reverse	0: Forward
		2	Fault Resetting	1: Fault Resetting	0: No Fault Resetting
		3	Fault	1: Fault	
		4	Alarm	1: Alarm	
0020H	State	5	Multi-functional (Dutput Command 1 (1:	DO ON 0: OFF)
002011	Signal	6	Multi-functional (Dutput Command 2 (1: 1	DO ON 0: OFF)
		7		Dutput Command 3 (1: 1	
		8	Multi-functional (Dutput Command 4 (1: 1	TA ON 0: OFF)
		9		Dutput Command 5 (1:	
		Α		Dutput Command 6 (1:	TA ON 0: OFF)
		B~F	(Reserved)		
		0	Overcurrent (OC)		
		1	Accelerating Over	rvoltage (Ou1)	
		2	Driver Overload (OL2)	
0021H	Fault	3	Driver Overheat (OH1)	
002111	Content	4	Decelerating Over	rvoltage (Ou2)	
		5	Constant-speed O	vervoltage (Ou3)	
		6	Hall Current Dete	ction Fault (HE)	
		7	External Abnorma	ality (EFO~EF1)	

• Monitoring Content (Read-only)

MODBUS Address	Name	bit	Content						
		8	Hardware Abnormality (CCF3~CCF6)						
		9	Motor Overload (OL1)						
		Α	Input/ Output Phase Loss or Imbalance	(SP1~SP2)					
0021H	Fault	В	Busbar Under-voltage (Uu1)						
002111	Content	С	Control Circuit Under-voltage (Uu2)						
		D	Charging Circuit Under-voltage (Uu3)						
		Е	Grounding GF or Load Short Circuit (S	C)					
		F	(Reserved)						
		0	Busbar Under-voltage Alarm(Uu)						
		1	Driver Overload Pre-alarm (OLP2)						
		2	Analog Signal 1 Abnormality (AE1)						
		3	Reserved						
		4	Temperature too high (OH2)						
		5	The serial communication doesn't recei	ve the norma	al control				
0022H	Alarm	-	signal (CE)						
002211	Content	6	The function code setting is inappropriate SF1 The operation mode is inconsistent with the terminal setting SF2						
		7	Output terminal setted up 26 can't up to						
		8	up 27 can't up to 3 sets of SF3.	4 sets of SF	5, and it setted				
		9	9 Motor Parameters Tuning Abnormality						
		A							
			(Reserved)						
0023H			uency command compensation						
0024H			ency command compensation						
0025H			but (V), $0 \sim 10.00$ v corresponding to $0 \sim 10^{-10}$						
0026H			but (V), $0 \sim 10.00$ V corresponding to $0 \sim 10$	000					
0027H	Output C								
0028H	Output V								
0029H	Set Frequ			1 (1	0.0				
	put	0	Terminal X1	1: Close	0: Open				
	In lite	1	Terminal X2	1: Close	0: Open				
	nal Sta	2	Terminal X3	1: Close	0: Open				
002BH	ctic nal	3	Terminal X4	1: Close	0: Open				
	ti-functional In Terminal State	4	Terminal X5	1: Close	0: Open				
	Multi-functional Input Terminal State	5	Terminal X6 Terminal X7	1: Close	0: Open				
	Mu	6 7 F		1: Close	0: Open				
		7~F	(Reserved)						
002CH		(Rese	erved)						

MODBUS Address	Name	bit	Content		
	out	0	DO	1: "ON"	0: "OFF"
	Multi-functional Output Terminal State	1	BRA-BRB-BRC Relay (Reserved on 1:"ON" 0:"OFF")	ly 3040GB and	d below
002DH	tion: inal 3	2	TA-TB-TC Relay	1: "ON"	0: "OFF"
	unc	3	Y1 Relay (Reserved only 3040GB and	below 1:"ON'	' 0:"OFF")
	ti-f Te	4	Y2 Relay (Reserved only 3040GB and	below 1:"ON'	' 0:"OFF")
	1ul	5	Y3 Relay (Reserved only 3040GB and	below 1:"ON'	' 0:"OFF")
	V	6-F	Reserved		
002EH	AO1 Ana	alog C	Output (V) 0~10.00V corresponding to 0~	-1000	
0031H	DC Mair	Bus	Voltage		
0032H	Output T	orque			
0033H	Current I	Rotatii	ng Speed		
0034H	Set Rotat	ting Sp	peed		
0035H	Operatin	g Line	ear Speed		
0036H	Set Linea	ar Spe	ed		
0037H	Output P	ower			
003CH	External	Count	t Value		
003D~	(D	1)			
003FH	(Reserve	a)			
0040~	Terminal	State	e, 0040H~004AH corresponding to BIT	0~BITA bit	of 002BH in
004AH	order				
004B~ 00FEH	(Reserve	d)			

• List of Modbus Register Addresses:

Function Code Form Parameter Code(DEC)	Modbus Register Address(HEX)
(Saving Confirmed)	(00FFH)
(Command Data)	(0001H~001FH)
(Monitoring Content)	(0020H~004FH)
P0.00~P0.19	0100H~ 0113H*
P1.00~P1.23	$0200\mathrm{H}\sim~0217\mathrm{H}$
P2.00~P2.50	$0300\mathrm{H}{\sim}$ $0332\mathrm{H}$
P3.00~P3.36	0400H \sim 0424H
P4.00~P4.35	$0500\mathrm{H}{\sim}$ $0523\mathrm{H}$
P5.00~P5.36	$0600\mathrm{H}{\sim}~0624\mathrm{H}$
P6.00~P6.18	$0700\mathrm{H}{\sim}$ 0712H
P7.00~P7.28	$0800\mathrm{H}\sim~081\mathrm{CH}$
P8.00~P8.28	0900H~ 091CH
P9.00~P9.21	0A00H~ 0A15H
PA00~PA.30	0B00H~ 0B1EH

Function Code Form Parameter Code(DEC)	Modbus Register Address(HEX)
Pb.00~Pb.08	$0\mathrm{C00H}{\sim}~0\mathrm{C08H}$
PC.00~PC.23	0D00H~ 0D17H
Pd.00~Pd.34	0E00H \sim 0E22H
PE.00~PE.12	0F00H \sim 0F0CH
PF.00~PF.12	1000H~ 100CH
(For parameter extending)	(1100H~FFFFH)

 Modbus Address Encoding Method: Refer to the function codes in the function code table. High 8 bit HI= function group number + 1; low 8 bit LO= function code. Other register addresses not listed are reserved.

• List of Abnormality Codes

Abnormality Code	Content	
01H	Command code error Command codes other than 03H, 08H and10H	
02H	Register address error None of the register addresses is registered Read the ENTER-confirmed special register[0X00FFH] The communication function of the address is not initiated in the function code setting. (Note1)	
03H	Number error Number of data read or written is not between 1 and 16 In the writing manner, the command data is not the bit number *2	
21H	Data setting error Upper and lower limit error during the control data & parameters input	
22Н	Writing manner error Write the non-revisable parameters or read-only parameters in operation (Note 2) Parameters write-protected (Note 3) Write data into the special read register Write in the case of CCF3, i.e. EEPROM fault	
23Н	Write in the case of under-voltage Write parameters in the case of Uu	
24H	Write parameters from communication during the parameter processing At the time of fault resetting, system power supply cutoff or data saving	
25H	CRC check fault (Note 4)	

Note 1: Set the P0.03 frequency setting as serial communication (when writing address 0002) or set P0.07 operation command control manner as serial communication (when writing address 0001).

Note 2: For parameters that can be set in operation, please refer to the function parameter list. If a parameter that cannot be revised in operation but can be revised at the time of stop, please stop the driver and then revise it.

Note 3: When parameters are write-protected and PF.01 is set to 1 or 2, please revise it as 0. Then all parameters can be revised.

Note 4: In case of CRC 16 check fault, response will be given even if the system receiving is over, and 25H fault will be reported to facilitate customer debugging.

Appendix 3 Driver Warranty Card

×

Driver Warranty Card

Name of User:				
Address of User:				
Contact Person:	Tel.:			
P.C.:	Fax:			
Туре:	Serial No.:			
Date of Purchase:	Date of Fault:			
Fault Details				
Motor: <u>KW</u> Pole	Application of Motor:			
Fault Occurrence Time: power supply, no-load, load% Others:				
Fault Phenomena:				
Fault Display: OC OL OU OH LU None Others:				
Control Terminal Used:				
Operation after Resetting: Yes No	Output Voltage: Yes No			
Total Working Time:Hrs	Fault Frequency: <u>Hz</u>			
Installation Site Details				
Power Voltage: U-V:V, V-W:V, W-U:V				
Transformer Capacity: KVA	Driver Earthing: Yes No			
Distance from the Power Source:m	Distance from the Motor:m			
Vibration: No, Medium, Strong	Dust: No, Medium, Much			
Others:				